

Energy analysis of a case-study textile mill by using real-time energy data

Ali Agha

PhD Student (III yr.)

Dr. D.P. Jenkins (Supervisor)

Urban Energy Research Group (UERG)

School of the Built Environment

Heriot-Watt University, Edinburgh, UK.

aqa1@hw.ac.uk

ECEEE summer study June 02-05, 2014 Arnhem, Netherlands

Contents

- Overview
- Research approach
- Case study site and energy analysis
- > Opportunities identified and savings made
- Conclusion

Overview

- Energy compliance and competitive business market
- Textile is a fragmented and heterogeneous SME
- •Energy consumption in the industry is very site specific
- •In the UK textile is responsible for 0.4% of the nation's total energy use

Rationale

- •More tailored programmes are needed to address an SME's individual technology-specific energy management needs.
- •Little attention has been paid to the development of energy use and energy efficiency in the available literature on the textile industry.
- •To control the energy consumption and cost in a system or process it is imperative to measure its energy use first.

key objectives are:

- To develop understanding about baseline energy use and energy trends and patterns
- To identify season related variation in energy intensity and disaggregate energy use
- To pinpoint efficiency opportunities and estimate the savings

Research approach

High resolution empirical energy data has been used for energy analyses in several studies. Average daily energy profiles are calculated against shift patterns to,

- visualise and understand energy use at short intervals
- pinpoint abnormal use, faults and failures
- Identify saving opportunities

A different approach has been used to disaggregate departmental load and gas use.

Case study site and energy analysis

- Johnstons of Elgin is a 200 years old <u>vertically</u> <u>integrated</u> woollen mill
- 22, 800m² treated area, consisting of both production and administration buildings
- Sales driven therefore varying rates of production and shift patterns
- Only two gas user technologies- boilers and a fabric dryer called "stenter"
- On-production (Mar-Sep) off-production (Oct-Feb)

In brackets, single underlined text is predominantly gas based thermal energy and double underlined text is electric

2005 total energy consumption

2005	Energy		Cost	Cost		Specific
Prices	Consumpt	10N			Energy	Energy
Utility	MWWyear	%	€year	%	Consumption kW-h /unit	Consumption kW-h/meter
Electric	4,342.86	20	284,020	47.9	1.74	N/A
Gas	16,994.51*	79.6	309,116	52.1	68	N/A
Total Energy	21,337.37		593,136		8.54	

source: Carbon Trust's 2006 survey report

2011 total energy consumption

2011	Energy Consumption		Cost		Specific Energy	Specific Energy
Prices Utility	MWh/year	%	€/year	%	Consumptio n kW-h /unit invoiced	Consumptio n kW·h /meter
Electric	4,147.61	19.33	469,168	48.65	181	367
Gas	17,313.05*	80.67	495,107	51 35	7.54	15.34
Total Energy	21,461.66		964,274		935	19.01

^{*}based on supplier's estimate invoices

2011 average on-season electric power demand

Legend

\rightarrow	\downarrow	^	i	ii	iii	iv
Continued	Starting	Finishing	Mon-	Friday	Saturday	Sunday
			Thursday			

2011 average off-season electric power demand

Legend

\rightarrow	↓	1	i	ii	iii	iv
Continued	Starting	CONTRACTOR DESCRIPTION	Mon- Thursday	STATE OF THE PARTY	Saturday	Sunday

2011 Monthly gas consumption

52500 (kWh

Gas consumption

Average daily gas demand for,							
Boilers Stenter		Other heating and cooking	Total				
3663 (m ³)	918 (m ³)	$140 (\text{m}^3)$	4725 (m ³)				

10200 (kWh)

2013 gas consumption figures

40700 (kWh)

Building heating demand= Production demand= 213,698 m³ or 2,374MWh 1,312,332 m³ or 14,581MWh

1555 (kWh)

Electricity demand (kW)

Base load	Production and operation	Production only	Operation only	Dye house + Weaving+ Yarn store	Finishing and Yarn production
118	919	711	208	362	349

Average departmental disaggregated load (kW)

Specific energy consumption per metre production

2011 specific energy consumption per meter of production

Some identified saving opportunities

HVAC systems

Temperature, schedule, and behaviour

Motors

 Resizing, efficient motors, and VSDs

Industry specific tech

- Stenter (Behaviour and component).
- Reduction in water use

Cross-cutting technology

- Weekend boiler management
- Improved compressed air units

Lighting

- LED lighting
- 8ft T12 fluorescent lighting

Energy recovery

- Heat recovery in the dyehouse
- Heat recovery from the stenter

As a result of energy conservation work started in February 2013, following initiatives were taken;

- "Sustainable Together" awareness raising campaign
- Weekend boiler management
- Improved boiler and steam system
- Prompt steam/boiler shutdowns
- Installation of AMR on gas meter

Gas savings

B

D

A

Electricity savings

C

Calculations based on cost (€) per unit (kWh)

Gas=

0.04

Electricity=

0.13

Conclusion

- Energy use in the textile is industry specific
- 60% rise in energy cost within the last six years
- Variation in energy trends and patterns is weather and rate of production influenced
- Estimate and missing gas bills can misguide energy analysis and production costing
- Energy saving actions has yielded encouraging results

Conclusion cont.

Continuous energy management is required

Energy efficiency investigations for other technologies are ongoing. Studies for embedded energy for a certain product line is intended to be carried out in the near future.

Acknowledgements

This study is part of a PhD project funded by the textile company Johnstons of Elgin, in collaboration with Heriot-Watt University

Thank you!

Ali Agha
PhD Student (III yr.)
(UERG)
Heriot-Watt University, Edinburgh, UK.
aqa1@hw.ac.uk

Questions/suggestions?