

The suitability of different types of industry for inter-site heat integration

Thomas Hills, Ajay Gambhir, Paul S. Fennell thomas.hills07@imperial.ac.uk

Industry uses 26% of EU energy

Where is exergy wasted?

Method

1. Design and measure the four plants

Energy and exergy analysis

2. Develop a heat exchanger network (Total Site Analysis)

- Pinch analysis
- Energy and exergy analysis

3. Design a comparative 'solution'

Heat-to-power and CHP

4. Compare the two scenarios

- Payback period
- Investment costs
- Energy savings

Choice of plants

- Many studies have looked at plants which are easier to integrate
 - Kalundborg (based around a refinery and power station)
 - Matsuda et al 09 30% saving in a site containing power plants, refineries, (petro)chemical plants...
 - Kim et al 10 "180 chemical or petrochemical plants"

- Hackl et al 11 120 MW potential savings at a "chemical cluster"
- What about the more difficult processes?

1. Design and measure the four plants

for Climate Change

- 16 streams
- 6 components
- Counter-current flows of gases and solids
- Grinding steps omitted

BF/BOF Steel plant

London **Recycled** paper plant Rejects **Rejects** Short fines Waste Fractionator Pulper Screen Paper screen 29 streams 4 components Foundring Producing packaging cardboard Short fines thickener (testliner & fluting) **Primarv** water **Tertiary water** circuit circuit Short fines Fine pulp hot Felts HW cycle refiner water recoverv Water heater Air **Steam Product** Dryers **Supercooled** Paper itute Steam ange

Imperial College

2. Develop a Heat Exchanger Network

- Minor flows ignored
- $\Delta T_{min} = 10K$ (this is a *theoretical* exercise)
- Heat exchanger costs from various correlations
- No costs of extra plant except heat exchangers and ancillaries included
- Mid-2013 Euros

Grand Composite Curve (GCC)

Results – Heat Exchanger Network

Results – energy & exergy savings

Results – Heat exchanger network

Characteristic		Value	Unit
Fuel savings (power)		485.5	MW
Number of heat exchangers		16	
Total heat transfer area of HEN	Heat integration	20 205	m²
	Steam generation	5 263	
Cost of HEN	Heat integration	13.5	M£
	Steam generation	1.3	IVIE
Specific cost of HEN		17	€/kW
Payback period		43	Days

What doesn't this include?

Exclusions

Results don't include:

- Alterations to existing plant (e.g. more BF stoves?)
- Use of metals other than carbon steel in HEXs
- Cost of back-up units
- Cost of rebuilding plant in a new location
- Financing & Legal

3. Design a comparative solution

	СНР	ORC	Total
Heat load (MW)	790.9		790.9
Overall efficiency	0.79	0.14	
Power output (MW)	208.8	34.52	243.32
Capital cost (k€)	152 217	69 762	221 979
Fuel cost (k€/y)	151 550		151 550
Operating cost (k€/y)	7 989	560	8 549
Electricity value (k€/y)	149 324	24 660	173 984
Heat value (k€/y)	100 889		100 889
Annual profit (k€/y)	90 674	24 100	114 774
Payback period (y)	1.68	2.83	1.93

4. Compare the two scenarios

Heat exchanger network	Electricity generation	
43 day payback period	1.9 year payback period	
€ 14.8 M investment	€ 220 M investment	
Old correlations	Newer cost correlations	
Requires adjacent plants	Plants can be isolated	
Requires trust between managers & investors	Independent operations	
Relatively obscure units (High-temp HEXs)	Relatively new processes (e.g. ORC)	

Who would invest in a HEN or electricity generation system?

Conclusions

- There is significant theoretical scope for energy exergy & financial savings through inter-site heat integration
 - even after considering an alternative investment
- Savings are predicated on the intimate locating of plants and their sharing of heat
 - Are the rewards worth the risks? Is it practical?
- Such networks are more suitable in new industrial centres than already-established ones

Conclusions & future opportunities

- However, inter-site integration is worth looking at – but its suitability is dependent on the plants
- Limited set of plants what plants are more suitable?
 - What *sizes* of plants are more suitable?
- Intelligent climate policy may spur on development of such systems

Thanks!

Thomas Hills

Department of Chemical Engineering & Grantham Institute – Climate Change and the Environment Imperial College London

thomas.hills07@imperial.ac.uk

+44 (0)7501060451

uk.linkedin.com/in/thomashills/