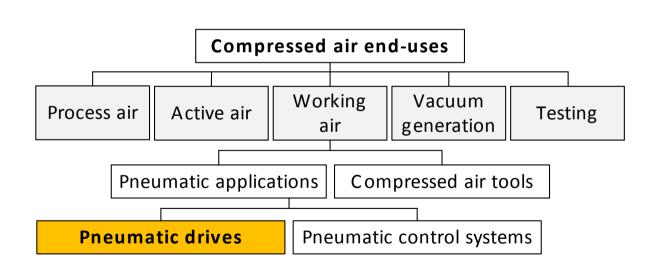
Electric or Pneumatic? Comparing Electric and Pneumatic Linear Drives with Regard to Energy Efficiency and Costs

Simon Hirzel, Tim Hettesheimer, Marcus Schröter

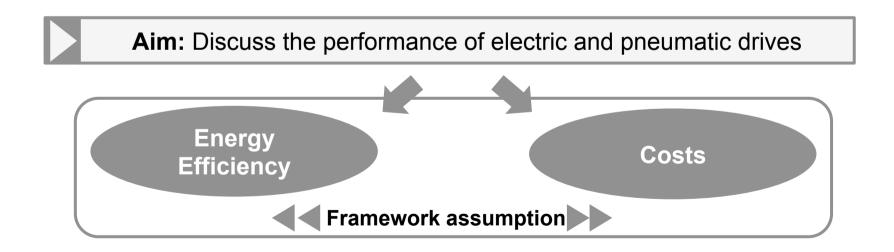
ECEEE 2014 Industrial Summer Study, Arnhem, 3rd of June 2014



- 1. Background & aim
- 2. Methodology
- 3. Outline of the analysis
- 4. Results
- 5. Discussion, Conclusions & Outlook

Background

- Relevance: Compressed air is an important energy consumer (~10 % of industrial electricity demand)
- Literature: Efficiency of compressed air usage approximately about 10 %
- **Result:** Discussion about the performance of compressed air usage

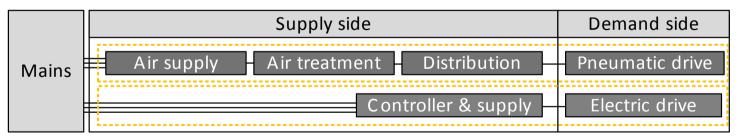


Problem & Aim

Problem:

- Analyses on compressed air performance across all end-uses
- Sample investigations of specific applications
- Heterogeneous technological solutions
- Numerous technological parameters to be considered

- 1. Background & aim
- 2. Methodology
- 3. Outline of the analysis
- 4. Results
- 5. Discussion, Conclusions & Outlook


Conditions for a comparison

Prerequisites:

- Similar technological performance (i.e. maximum loads, acceleration, velocity, cycle times)
- Environmental requirements fulfilled (robustness, explosion protection, hygienic standards)

Remarks:

■ Difference in the structure of the upstream energy supply system → allocation problem

All costs relevant for a decision-maker have to be considered

Methodology: Comparing energy demand

Equality of demand: Drives perform equally well if their energy demand is equal Ε

$$E_{pn} = E_{el}$$

- Energy demand for one operating cycle Pneumatic drive pn
- Electric drive el
- Cycle consumption: Split into three states

$$E_{pn,m} + E_{pn,h} + E_{pn,s} = E_{el,m} + E_{el,h} + E_{el,s} \xrightarrow{m}{h} \qquad \text{Drive moving } (pn \text{ resp. } el) \\ \text{Drive holding } (pn \text{ resp. } el) \\ \text{Drive holding } (pn \text{ resp. } el) \\ \text{Drive idle waiting } (pn \text{ resp. } el) \\ \text{Driv$$

Methodology: Comparing costs

Equality of costs: Drives perform equally well if their overall costs are equal

$$C_{pn} = C_{el}$$
 C Overall costs (pn resp. el)

Split of overall costs: Investment and operation

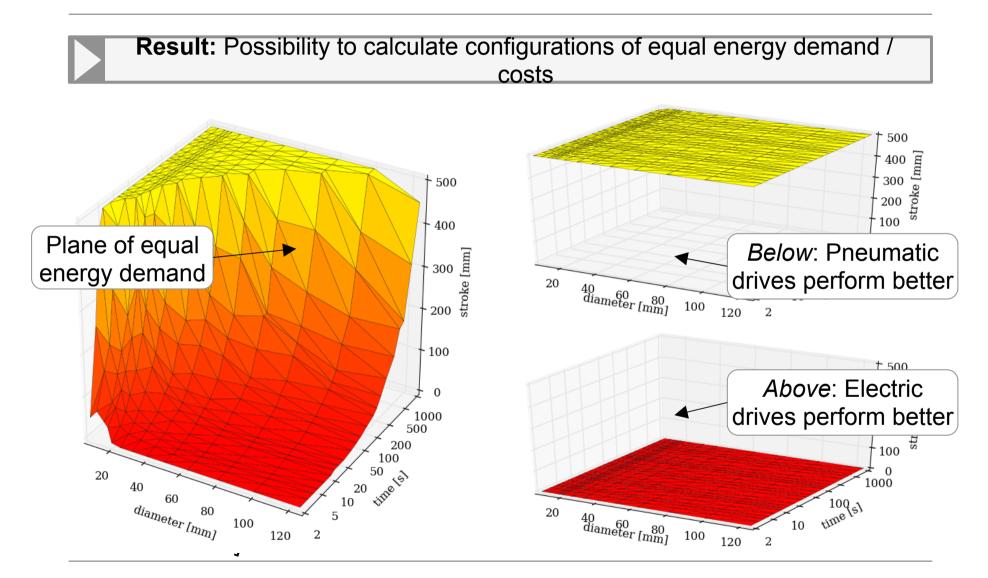
 $I_{pn} + c_{pn} \cdot T = I_{el} + c_{el} \cdot T$ TTTTInvestment (pn resp. el)Annual operating costs (pn resp. el)I ifetime (identical)

Investments: Price of the axis plus mark-up for additional components

t_{year}

D

 $I_{pn} = I_{pn,cyl} \cdot (1 + \beta_{pn}) \qquad I_{cyl} \qquad \text{Investment pneumatic cylinder (pn resp. el)} \\ \beta \qquad \text{Mark-up for additional components (pn resp. el)}$


Operation: Energy-related costs based on cycle consumption

$$c_{el} = E_{el} \cdot \frac{t_{year}}{t_{cvc}} \cdot p_{el}$$

Annual operating time (identical) Price for electric energy (similar approach for *pn*)

Illustration of concept

- 1. Background & aim
- 2. Methodology
- 3. Outline of the analysis
- 4. Results
- 5. Discussion, Conclusions & Outlook

Definition of the baseline

- **Analysis:** Double acting pneumatic cylinders and spindle-type electric axes
- Baseline parameters for the comparison:

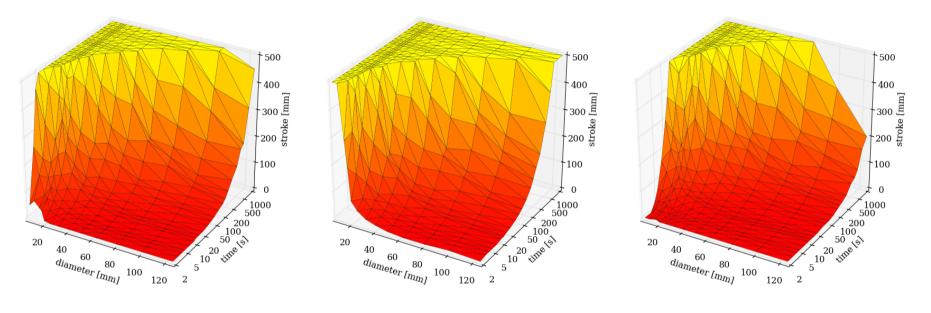
Parameter	Value	Parameter	Value
Specific demand of air	0.120 [kWh/m³]	Ambient temperature	293.15 [K]
supply	0.120 [(((()))]]	Norm temperature	273.15 [K]
Compressed air leakage	0 [m³/s]	Electricity price	0.10 [€/kWh]
Pneumatic holding demand	0 [m³/s]	Costs of compressed	
Holding time	0 [s]	air	0.15 [€/m³]
Length of piping	1 [m]	Annual operating time	4,000 [h]
Efficiency of electric supply	80 [%]	Lifetime	5 [a]
Stand-by of electric supply	25 [W]		
Ambient pressure	1 [bar _a]		
Operating pressure	7 [bar _a]		

- Pneumatic drives: Calculation of air demand based on geometrical features
- **Electric drives:** Simulation-based calculation of energy demand (research project)

Definition of the cases

Case Description

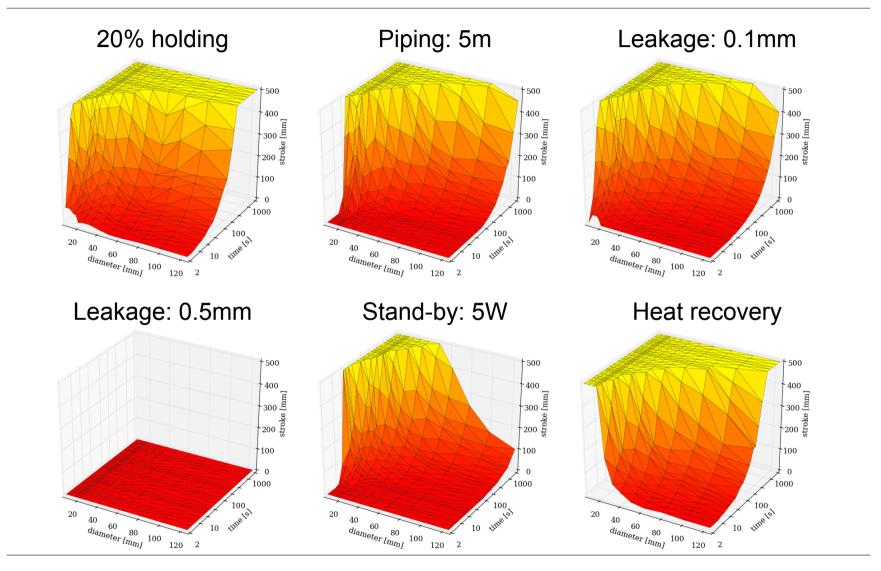
- 0 Baseline
- 1 20 % of the cycle time are used for holding operations
- 2 Length of piping extended to 5 meters
- 3 Assumed leakage of 0.1 mm
- 4 Assumed leakage of 0.5 mm
- 5 Reduction of electric stand-by to 5 Watt
- 6 Use of a heat recovery at the compressor
- 7 Single-shift instead of double-shift operation
- 8 Lifetime extended to 7 years
- 9 Reduction of investments for electric drives


- 1. Background & aim
- 2. Methodology
- 3. Outline of the analysis

4. Results

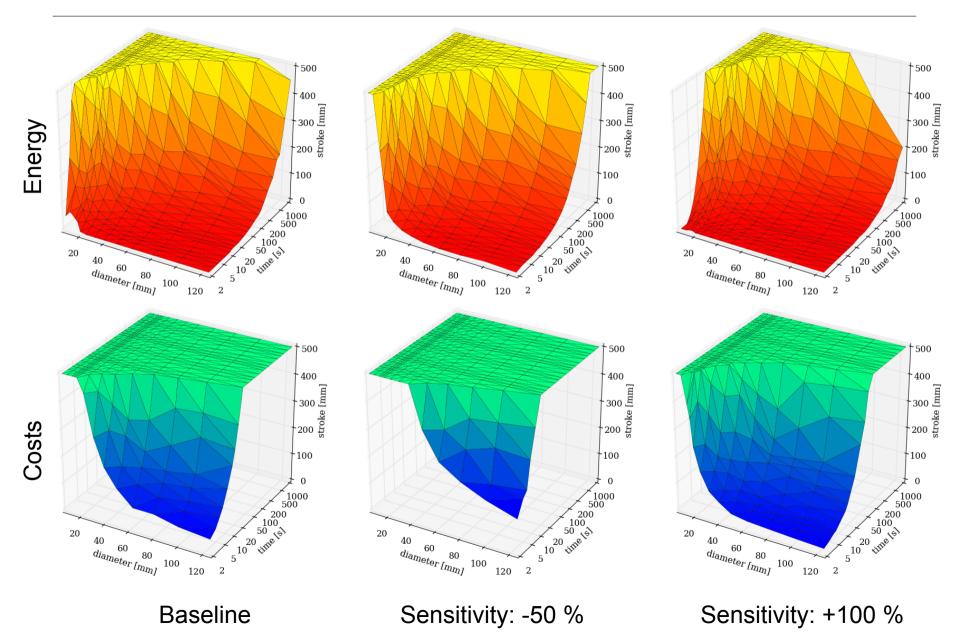
5. Discussion, Conclusions & Outlook

Energy: Baseline and sensitivity

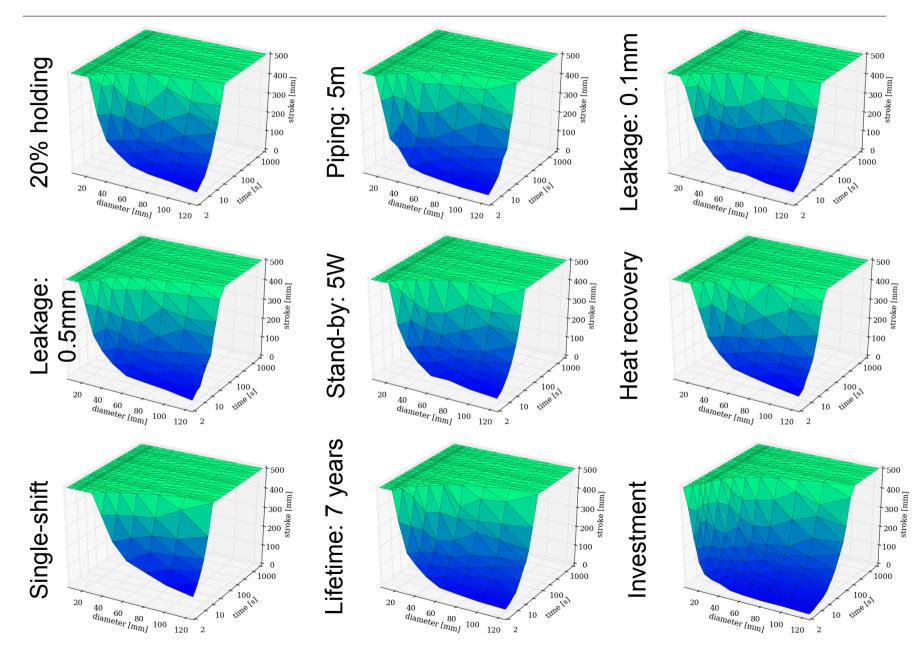


Baseline

Sensitivity Energy demand of pneumatic drives -50 % Sensitivity Energy demand of pneumatic drives +100 %



Energy: Cases



Costs: Baseline and sensitivity

Costs: Cases

- 1. Background & aim
- 2. Methodology
- 3. Outline of the analysis
- 4. Results
- 5. Discussion, Conclusions & Outlook

Discussion, Conclusions & Outlook

Discussion

- Discussion of ordinal statements (no differences in intensity)
- Analysis is subject to uncertainty

Conclusions

- Generalizing statements on the performance of electric and pneumatic linear drives difficult
- Awareness on dependence of assumptions necessary
- Performance-oriented not technology-oriented discussion required

Outlook

- Analysis of other drives and technological parameters
- More detailed picture on usage and energy demand
- Detailed analysis of energysaving potentials
- Investigation on decisionmaking behaviour for drive selection

Thank you for your attention !

