

Assessment of the economic viability of the integration of industrial waste heat into existing district heating grids

Marcus Hummel, Lukas Kranzl, Carmen Villotti Energy Economics Group, Vienna University of Technology

Content

(1) Motivation & research question

(2) Methodology

(3) Data & Definition of reference case

(4) Results

(5) Conclusions & discussion

Motivation

- Remarkable amount of industrial waste heat currently unused
- Low-temperature heat demand in district heating grids
- Increase efficiency of the overall energy system by using this excess heat in district heating grids
- → Need for an understanding of the economic performance of industrial waste-heat-to-grid systems

Research question

"What is the economic feasibility of the integration of industrial waste heat into existing district heating grids under different conditions?"

- → identify the parameters that have the highest influence on the economic efficiency of industrial waste-heat-to-grid systems
- → estimate expectable supply costs for industrial waste-heat-togrid systems

eceee – summer study on industry 2014, June 4th

METHODOLOGY

Methodology overview

- A techno-economic modeling tool is developed that simulates industrial waste-heat-to-grid systems on an hourly basis
- (2) Data research is conducted on costs of industrial waste heat recovery and feed in district heating grid systems
- (3) a reference scenario is defined and a sensitivity analysis is carried out in order to identify the parameters with the highest influence on the economic feasibility

System concept used for the analysis

Economic representation

- Calculated on the basis of one representative year
- Dynamic economic assessment: discounted cash flow calculation
- Chosen assessment value: Levelized Costs of Heat (LCOH)

$$LCOH = \frac{\sum_{t=0}^{\tau} C_t (1+r)^{-t}}{\sum_{t=0}^{\tau} E_t (1+r)^{-t}}$$

eceee – summer study on industry 2014, June 4th

DATA & DEFINITION OF REFERENCE CASE

Costs for the waste-heat-to-grid system

Heat Exchangers, transfer station: investment, O&M

heat exchanger	base value in the cost curve	parameters of the cost curve				
		а	b	С		
plate heat exchanger	heat transfer surface [m²]	410	-0.30	200	300 - 400	€/m²
compressor heat exchanger	rated motor power [kW]	199	-0.32	21	50 - 80	€/kW
tube bundle heat exchanger	heat transfer surface [m²]	363	-0.10	265	500 - 550	€/m²
transfer station	transfer power [kW]	1,048	-0.63	3	10 - 15	€/kW

$c_{invest} = a \ Base^b + c$

Pipes: investment for pipes and insulation

- 27 213 €/m inside plant area (above ground, 25 150 mm)
- 300 500 €/m outside plant area (underground, 25 150 mm)
- Pumps: Investment, O&M, electricity
 - 1500 6900 € (32 150 mm)
 - 11 ct.EUR/kWh electricity

Definition of the reference case

parameter	unit	reference case	range of sensitivity analysis	
available waste heat power	MW	1	0,5 - 3	
T return, district heating grid	°C	50	40, 50, 60	
T flow, district heating grid	°C	70 - 90	no variation	
economic assessment period	а	10	1 - 20	
interest rate	%	7	no variation	
distance between the transfer station and the grid	m	250	100 - 1000	
load profile	-	2 shifts, no weekends, no holidays	2 / 3 shifts, weekends yes/no, holidays yes/no	

eceee – summer study on industry 2014, June 4th

RESULTS

return temperatures of the district heating grid, economic assessment periods, cost components

Sensitivity comparison

temperature of the return flow (T_{return flow, X}) / sensitivity parameter

return flow temperature, distance to grid

available waste heat power, full load hours

eceee – summer study on industry 2014, June 4th

CONCLUSIONS & DISCUSSION

Conclusions & discussion

- Highly influencing factors on the economic efficiency of industrial waste-heat-to-grid systems:
 - return temperature of the district heating grid
 - distance between transfer station and the district heating grid
 - economic assessment period
 - available waste heat power
 - full load hours of the system
- ➢ For many combinations of these parameters → costs below
 1 ct.EUR/kWh (purchase prices in Europe 4 5 ct.EUR/kWh)
- ➤ However, this is a first and theoretical estimation!

Further important aspects – at the plant side

Variation of load and temperature profiles for waste heat from various processes: strong assumption that all processes have the same load profiles for this study

→ Storage tank needed, increase of costs especially for short economic assessment periods

- Differences in materials treated within the processes: sometimes need for special materials of the heat exchangers to avoid erosion
 - \rightarrow remarkable increase in the investment costs possible

Further important aspects – at the grid side

- High flow temperatures in some existing district heating grids: In primary parts of large district heating grids also temperatures up to 110°C and above occur (vs. 70 – 90 °C in this study)
 - \rightarrow reachable with waste heat or heat pump needed?
- Limitations regarding the amount of waste heat to be integrated: depends on the existing supply structure in the grid (base load in summer approx. 10% of peak load in winter)

 \rightarrow could be a barrier for implementation if base load is filled with waste incineration (often occurring in large cities)

Questions for the discussion

- > What is your experience regarding costs for HEx and piping?
- Do you know data sources for further research: costs for components / transaction / permission?
- Do you have (heard of / seen) calculations for industrial waste-heat-to-grid systems? What were the results there?

→ Thank you!