ECEEE Summer Study, Arnhem, 4 June 2014

Barriers to electricity load shift in companies: a survey-based exploration of the end-user perspective

Mark Olsthoorn

Grenoble Ecole de Management

Joachim Schleich

Grenoble Ecole de Management & Fraunhofer ISI

Marian Klobasa

Fraunhofer ISI

Introduction: objective

- Load shift
 - voluntary reduction or increase of momentary electricity demand in response to incentives.
- Need for load shift:
 - Growing demand and increasing diffusion of solar and wind challenge grid stability
 - Alternatives are expensive and/or slow
- Problem: slow uptake/diffusion
- Why?

– Which barriers to uptake do end-users perceive?

Introduction: Old World

TECHNOLOGY & INNOVATION

MOTI Seminar 2014-06-05

Introduction: research questions

- 1. Under current public policies, which barriers keep manufacturing businesses from practicing load shift more?
- 2. Which barriers to load shift can be grouped together?
- 3. Do company characteristics matter for the perception of barrier relevance?

Data & method: design

- Empirical, quantitative exploration (not done before for load shift)
- One-time online survey: cross-sectional data
- Multi-sectoral: Manufacturing industries
 - Significant unused potential
 - Low-hanging fruit
- Level of analysis:
 - Electricity users, production sites
- Region: Southern Germany
 - Ahead of the curve: pilot for other countries

Data & method: building on energy efficiency literature

- Extensive literature on Energy Efficiency Barriers
- Is this knowledge transferrable to Load Shift?
- Load Shift ≠ Energy Efficiency
- Expected:
 - Transferrable approach
 - Different barriers and ranking
- Frameworks:
 - Sorrel et al. 2004: theoretical barrier taxonomy
 - Cagno et al. 2013: actor-based barrier taxonomy

Data collection: self-administered online survey

Barrier category (Cagno et al. 2013)	Barrier items in the questionnaire
Technological	Technological measures unknown
	2. Technically infeasible to reduce peak load
	3. Technical risk of disruption of the production process
	4. Risk of lower product quality
	5. Data security
Information	6. Electricity cost savings uncertain
	7. Financial implications not known
Regulatory	8. Future regulations not known
	9. Restrictive regulatory framework
	10. Complex regulatory framework

Method: 21 survey questions (cont'd)

Barrier category (Cagno et al. 2013)	Barrier items in the questionnaire						
Economic	11. Electricity cost savings are low						
	12. Cost savings too far in the future						
	13. Additional operating costs						
	14. Additional investment costs						
	15. Access to external capital						
	16. Access to internal capital						
	17. Disruption of operations						
Behavioral	18. Energy management not a priority of top management						
	19. Priority of other investments						
Organizational	20. Additional workload						
Competences	21. Employees lack the right skills						

Results: barrier ranking

Rotated Component Matrix ^a	(N=48)	nancial	erection of the second	Najlabilit	on prior	Ompetent
Barrier	1	₹ 7.	3	4	5	Commu- nalities
Energy cost savings too far in the future	.695	.102	.304	.152	124	.624
Financial consequences unknown	.619	.048	.264	.267	.128	.542
Additional operating costs	.626	.230	.076	.180	098	.492
Electricity cost savings are uncertain	.800	080	010	.235	104	.712
Required investments too high	.546	.078	.466	.340	436	.828
Low electricity cost savings	.740	.022	.107	.136	.198	.618
Regulations too complex	.663	.260	.207	.014	.273	.625
Regulations are too restrictive	.596	.302	364	.005	.164	.606
Future regulations uncertain	.735	.058	009	203	.296	.673
Technologically impossible to reduce peak load	184	.877	.042	.059	096	.818
Interference with personnel planning	.232	.772	.226	016	.198	.741
Potential negative impact on product quality	.156	.851	203	.207	.020	.834
Technical risk of production process disruption	.253	.846	053	.125	.122	.813
Lack of access to external capital	004	165	.756	.209	021	.643
Lack of (access to) internal capital	.233	.061	.801	201	.117	.754
Technological options unknown	.091	.064	.741	.228	.115	.627
Energy management not a priority for top management	.140	.094	.143	.707	.367	.684
Other investments have priority	.277	.273	.137	.790	.022	.794
Employees lack skills	.078	.057	.264	.318	.774	.780
Data security	.378	.384	083	.136	.471	.537
Additional workload	.384	.103	.447	.389	.307	.604

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 8 iterations.

Results: Effect of company characteristics

Barriers	Electricity expenditures			Norma	al elec	tric load	Electricity intensity			
	samples	Ν	Δ (means)	samples	Ν	Δ (means)	samples	Ν	Δ (means)	
Lack of access to internal capital	High	26	0.183	High	26	-0.122	High	23	-0.723*	
	Low	32		Low	35		Low	27		
Technological options unknown		38	-0.395		36	-0.403		28	-0.695*	
		34			37			30		
Additional operating costs		35	0.605*		34	0.570		29	-0.107	
		34			38			28		
Electricity cost savings uncertain		32	0.500		31	0.715*		27	0.561	
		35			39			28		
Regulations too restrictive		28	0.599*		26	0.331		22	0.909**	
		31			35			28		
Future regulations uncertain		32	0.891**		31	0.396		30	0.148	
		35			39			27		
* p < 0.05, ** p < 0.01										

Results: Effect of company characteristics

Barriers	Batch production			Just-in	production	Continuous production			
	samples	Ν	Δ (means)	samples	Ν	Δ (means)	samples	Ν	Δ (means)
Energy management not a priority	Batch	13	0.020	JiT	14	1.017**	Cont.	32	-0.769*
of top management	Other	52	0.038	Other	50		Other	27	
Additional conduction		13	0.743		15	0.427		32	-0.808*
Additional workload		53			50			28	
Interference with personnel		13	1.155**		15	-0.020		33	-0.688*
planning		54			51			28	
Potential negative impact on		14	0.643		15	0.264		28	-0.633*
product quality		49	0.043		47			29	
Technical risk of production		14	0.541		15	0.317		29	-0.655*
process disruption		49	0.541		48			29	
Avg of all barriers for full cases		9	0.322		6	0.435		18	-0.557*
		29			31			15	

Conclusions

- First quantitative study of barriers to load shift within a conceptual framework borrowed from energy efficiency
- Results show differences between energy efficiency and load shift
 - Technical risk is the most important concern
 - Financial risk is second
 - Access to capital not (yet) important

Issues for further investigation

- How is load shift different from energy efficiency?
 - Transferability of knowledge
 - Synergies and antagonisms
 - Implications for adoption?
- More than financial: shift of risk to end-user?

