

Energy-efficiency investments and the concepts of non-energy benefits and investment behaviour

Josefine Rasmussen

Division of Business Administration

Department of Management and Engineering

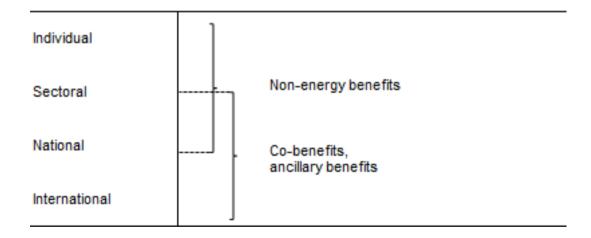
LIU EXPANDING REALITY

Background

 Project financed by the Department of Management and Engineering, Linköping University, and the Swedish Energy Agency

 The aim of the project is to make energy-efficiency investments a strategic issue for Swedish industry

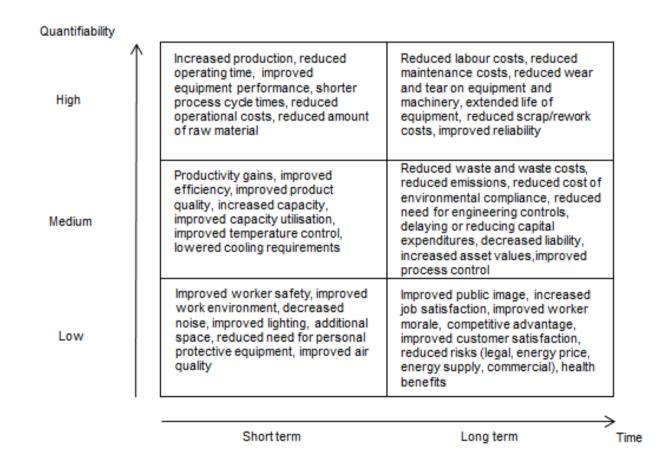
Aim


- Categorise and define the benefit concepts related to industrial energy- efficiency investments
- Propose a methodology for categorising the benefits in a way that can meet the need for quantifiability
- Integrate the benefit concept with findings from investment behaviour

Method

- Literature review on both areas
 - 1. Systematic search on the most common benefit concepts
 - For investment behaviour and the decision-making process; a combination of systematic search and backward searching

Benefit concepts


 Non-energy benefits, indirect benefits, co-benefits, multiple benefits, ancillary benefits, productivity benefits...

Previous categorisations of non-energy benefits

- By type
 - Waste, working conditions, production etc.
 - For example Worrell et al. (2003). Productivity benefits of industrial energy efficiency measures. *Energy* 28(11): 1081-1098
- By economic level
 - Individual, sectoral, national, international
 - For example IEA (2012). Spreading the Net: The multiple benefits of energy efficiency improvements. Insight Series 2012. Paris
- By their relation to competitive advantage
 - Cost, value, risk
 - Cooremans (2011). Make it strategic! Financial logic is not enough. Energy Efficiency 4(4):473-492.

Defining & categorising industrial non-energy benefits to facilitate quantification

Investment behaviour & decision-making

- Firm and investment characteristics
 - Firm size, sector, energy intensity, high risk, low profitability, low strategic value, uncertainty, among others
- Barriers and driving forces
 - Barriers: Low priority level, uncertainty, irreversibility, energy costs not considered important, technical risk
 - Driving forces: Green public image, potential cost savings, improved working conditions
- Phases of the decision-making process
 - Vary between models but always include financial analysis and evaluation

Suggestions

- Non-energy benefits is the most adequate concept to use in an industrial context and can be defined as the benefits of industrial energy-efficiency investments, beside energy savings, that are quantifiable at a certain level and arise at some point in time
- Including quantifiable non-energy benefits in the evaluation process can increase the priority level for energy-efficiency investments
- Non-energy benefits of a low quantifiability level can serve as extra arguments at a later step in the decision-making process to select between similar investment opportunities
- 4. Including quantifiable non-energy benefits may increase the reward from energy-efficiency investments and increase the value of investing today, overcoming known barriers as well as reinforcing driving forces

Conclusion

- Non-energy benefits is the most adequate benefit concept to use in an industrial context
- By defining and categorising non-energy benefits by their level of quantifiability and time frame, they can be included in the decisionmaking process and increase the probability for adopting energyefficiency investments
- The concepts of non-energy benefits and investment behaviour can be integrated and contribute to improved energy efficiency for the industry

Thank you for your attention!

josefine.rasmussen@liu.se

Linköping University

expanding reality

www.liu.se

LIU EXPANDING REALITY