EVALUATING THE CURRENT EU ENERGY EFFICIENCY POLICY FRAMEWORK AND ITS IMPACT UNTIL 2020 AND 2030

eceee 2015 Summer Study

1 – 6 June 2015 Presqu'île de Giens, France

Barbara Schlomann, Wolfgang Eichhammer Fraunhofer Institute for Systems and Innovation Research ISI

Outline

- Background: the EU energy and climate policy targets and the study underlying this presentation
- Methodology: Modelling approach and scenario definitions
- Results with respect to the 2020 and 2030 energy efficiency targets
- Challenges and Conclusions

The EU energy and climate policy targets for 2020 and 2030

EU 2020 target system EU 2030 policy framework Reduction in GHG emissions by 20% Reduction in GHG emissions by at compared to 1990 least **30%** compared to 1990 Increase in share of renewables in total EU gross final energy Increase in share of renewables to consumption to **20%** at least 27% Reduction of primary energy consumption by **20%** compared to Reduction of primary energy a trend (PRIMES 2007) ⇒ Art. 3 EED: consumption by at least 27% primary energy in 2020 should not compared exceed1474 Mtoe and final energy to the same trend projection as for 2020. 1078 Mtoe (EU-27) Evaluation of energy efficiency potentials Achievement of the 2020 in the frame of a (possible) 2030 target system energy efficiency target

Underlying project: "Study evaluating the current energy" efficiency policy framework in the EU and providing orientation on policy options for realising the cost-effective energyefficiency/saving potential until 2020 and beyond"

- Achievement of 2020 energy efficiency (EE) target Three methods:
 - Bottom-up investigation of EE measures based on Art. 7 notification and NEEAPs
 - **Decomposition analysis** of statistical development 2008-2012 and projection to 2020
 - Bottom-up modelling of EU-wide and national policy measures in 4 scenarios
- Energy efficiency potentials for 2030

Method[.]

Bottom-up modelling of EU-wide and national potentials in the extension of the 4 measure-based baseline scenarios + 3 potentials scenarios

Bottom-up modelling approach: calculation of 3 potential scenarios

- The **INVERT/EE-Lab model** (run by TU Vienna in cooperation with Fraunhofer ISI) for residential and non-residential buildings
- The **FORECAST platform** (run by Fraunhofer ISI), including an industrial model as well as the electricity uses in the residential and service sector
- The ASTRA model (run by Fraunhofer ISI) providing potentials for the transport sector

Scenario	Explanation
Low policy intensity (LPI)	Barriers and high discount rates (sector and partially country specific) persisting.
High policy intensity (HPI)	Low discount rates and barriers (partially or totally) removed. The discount rates are sector specific.
Near economic (NE)	Potentials which are not economic but scenario induces costs not much higher than present level energy consumption entails.

Analysis of potentials

⇒ relative to a reference development close to PRIMES 2013 [Base_inclEA scenario] \Rightarrow compared to 2008

Main data sources for the analysis

Statistical data (models gauged to statistical data and detailed indicators)

- Eurostat + National statistics
- Odyssee-MURE project
- Data from associations
- Data from specific surveys (e.g. tertiary sector in Germany)

Technical data

- Sectoral and branch-specific technical literature, technical information from awards,...
- Results of specific EU projects, for example ENTRANZE for buildings
- Electricity projections for several electricity suppliers
- Large number of implementation projects, e.g.:
 - Learning Networks for Energy Efficiency (700 companies)
 - Benchmarking for compressed air

Results with respect to the 2020 gap

	Distance to pr target i		Distance to final energy target in 2020		
	Mtoe	%	Mtoe	%	
PRIMES 2007 projections for 2020 on which the 20% target was derived	vhich the		1348	20%	
EED target (EU27)	1474	-	1078	-	
PRIMES 2013 projections	1534	3.3	1130	3.9	
Bottom-up policy analysis (with "perfect" national implementation of EED)	1432	-2.3 (target overreached)	1057	-1.6 (target overreached)	
Bottom-up policy analysis (with implementation gaps)	1474	0.0 (target reached)	1086	0.6	
Decomposition analysis (three variants)	1504 - 1533	1.6 - 3.2	1108 - 1129	2.2 – 3.8	
Modelling analysis (Reference scenario Base_inclEA)	1504	1.7	1108	2.3	

The gap to the 2020 target ranges from a maximum of 3.3% in primary energy terms to a minimum of -2.3% if all bottom-up measures identified are appropriately implemented. The respective range for final energy is between + 3.9% and -1.6%.

The modelling analysis confirms these results (gap of 1.7 / 2.3% for primary / final energy).

Final energy savings by sector in the LPI/ HPI/NE scenarios (EU27) for 2030

				P		07 Baselir 13 Baselir	
Potentials in 2030 compared to BASE_InclEA scenario	[Mtoe]						
	LPI	Н	PI	NE	LPI	НРІ	NE
All final demand sectors	1	03	194	221	9.6%	18.2%	20.6%
Residential sector		23	73	79	8.3%	25.9%	28.1%
Tertiary sector		25	47	50	13.9%	25.9%	27.7%
Transport sector		28	41	46	9.2%	13.4%	14.9%
Industry sector		26	33	46	9.5%	12.2%	16.8%
Potentials in 2030 compared to 2008	[Mtoe]		[%]				
	LPI	н	Ы	NE	LPI	HPI	NE
All final demand sectors	2	01	293	319	17.2%	25.0%	27.3%
Residential sector		52	101	107	16.7%	32.7%	34.7%
Tertiary sector		34	56	59	17.9%	29.4%	31.1%
Transport sector		30	93	97	22.1%	25.7%	27.0%
Industry sector		36	43	56	11.6%	14.0%	18.0%

Primary energy and GHG savings in the HPI scenario in 2030

High Policy Intensity Scenario (HPI):

Low discount rates and barriers (partially or totally) removed

- Cost-effective for the individual investor, i.e. delivers a net financial benefits over the lifetime of the energy saving measures behind the scenario calculations
- ⇒ reflects an ambitious, but economically feasible development of energy efficiency in the EU

Primary (economic) saving potential in 2030	2030 potentials in terms of GHG savings compared to 1990
Compared to Primes 2013 baseline: 22 – 25%	Assuming a RES share of 27%: 45%
Compared to Primes 2007 baseline: 38 – 41%	Assuming a larger RES share of 35%: 50%
Target 2030: 27%	Target 2030: 40%

PRIMES 2013

Discount rates			Ihe	
(in real terms)	rates of PRIMES	2015	2020 - 2050	rate
Power generation	9%	9%	9%	
Industry	12%	12%	12%	
Tertiary	12%	11%	10%	
Public transport	8%	8%	8%	
Trucks and inland	12%	12%	12%	
navigation	1270	1270	1270	
Private cars	17.5%	17.5%	17.5%	
Households	17.5%	14.75%	12%	Study by Fraun

The discount rate dispute...

Study by Fraunhofer ISI/TU Vienna/pwc

PRIMES integrates (perceived or existing) risks into the discount rates to a large degree. Our scenario approach essentially uses usual capital costs, considering that there are instruments to mitigate the risks and the risk perception

Sector	Scenario¤	Discount-rate¤ ¤
Household – space heating and hot water	All	3.1%·to·3.7%∯·¤ ¤
Tertiary space heating and hot water∞	All-3 ₁₂	4.7%·to·5.4%·4¤
HouseholdAppliances¤	Potential_2030_LPI¤	Typically⋅6%¶ ¤ (discount· rates· vary· between· different· countries, · applianc- es)∞
	Potential_2030_HPI¶ Potential_2030_NE¤	2%¶ ¤ (assuming·removal·of·barriers· from·2020)¤
Tertiary Appliances∞	Potential_2030_LPI¶ Potential_2030_HPI¶ Potential_2030_NE¤	15%¶ ¤ 5%¶ 5%¤
Industry¤	Potential_2030_LPI¶ ↓ Potential_2030_HPI¶ ¶ Potential_2030_NE¤	Paypack up to 2 years ac cepted by 50% of companies; heating systems 15% Paypack up to 5 years ac- cepted by 60% of companies; heating systems 15% Companies accept longer payback periods 3) heating systems 3% a
Transport¤	N/A¤	N/A¤ ¤

Challenges and Conclusions

- For primary energy, the gap to the 2020 target ranges from a maximum of 3.3% to a minimum of -1.5% if all bottom-up measures are appropriately implemented.
- In our reference scenario (which misses the 2020 target by 1.7%), we assumed an ambitious implementation and further development of the key European Directives (EED, EPBD, Ecodesign, Labelling) ⇒ some policy effort is still needed to fullfil these conditions.
- Economic energy savings may reach up to 40% in 2030 in primary energy terms which by far exceeds the 27% EU target for 2030.
- In the HPI scenario, we assumed a removal of economic and non-economic barriers is significant policy effort is needed to remove these barriers at the EU and national level.
- order to ensure a stable long-term financing.

Thank you for your attention

For more information:

http://www.isi.fraunhofer.de/isi-en/x/projekte/PolicyEval_Framework_331252.php

https://ec.europa.eu/energy/en/studies?field_associated_topic_tid=45

Barbara Schlomann / Wolfgang Eichhammer

Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Str. 48, 76139 Karlsruhe, Germany barbara.schlomann@isi.fraunhofer.de wolfgang.eichhammer@isi.fraunhofer.de www.isi.fraunhofer.de

