

Estimating direct rebound effects for personal automotive travel in Great Britain

Lee Stapleton, Steve Sorrell, Tim Schwanen

Contents

- Headline Summary
- Context
- Methods
- Results
- Conclusions

Headline Summary

- Using on-road fuel intensity, we are unable to obtain a statistically significant estimate of the direct rebound effect
- But using both fuel prices and fuel costs per kilometre, we obtain a number of statistically significant estimates that suggest a direct rebound effect of around 18%
- We find no evidence of a relationship between the statistical robustness of our models and the estimated size of the direct rebound effect

Context

- Technical improvements lower transport costs and thereby encourage increased transport activity and energy use
- Passengers travel further and more often in larger, faster, more powerful and emptier cars
- But establishing causality is difficult when (i) data are limited and uncertain (ii) data exhibit limited change over time (near horizontal lines in geometric terms); (iii) appropriate regression methods are complicated to implement

Methods – data I

Methods – data II

Methods – modelling rebound

- Approach one: how does improved technical efficiency (declining vehicle fuel intensity and declining fuel prices) increase travel (vehicle kilometres travelled)?
- Approach two: how does improved technical efficiency (declining fuel costs per kilometre) increase travel (vehicle kilometres travelled)?

Methods – model groups

Group	Explained variable (S)	Normalisation of explained variable	Rebound specification
1	VKM	Per capita	Fuel price (£/MJ) and intensity (MJ/km)
2	VKM	Per adult	Fuel price (£/MJ) and intensity (MJ/km)
3	VKM	Per driver	Fuel price (£/MJ) and intensity (MJ/km)
4	VKM	Per capita	Fuel cost of driving (£/km)
5	VKM	Per adult	Fuel cost of driving (£/km)
6	VKM	Per driver	Fuel cost of driving (£/km)

Methods – model types

- Static regression models: quantify the change in car travel over time attributable to different variables (rebound variables, income, urbanisation and congestion and oil price shocks)
- Dynamic regression models: acknowledge that car travel in any particular year is partly dependent on car travel in previous years
- Co-integrating regression models: in effect, these are similar to static regression models but (may be) optimal for 'trending' variables

Methods – diagnostics (static and dynamic models)

- Coefficients: do they behave? [3 tests]
- Residuals: do they behave? [3 tests]
- Stability: are predictions stable? [2 tests]
- Parsimony: is their a sound balance between good predictions and model complexity? [3 tests]
- Functional form: is the model structure appropriate? [2 tests]

48 MODELS x 13 DIAGNOSTIC TESTS = 624 TESTS ON STATIC AND DYNAMIC MODELS

Methods – diagnostics (co-integrating models)

- Coefficients: do they behave? [3 tests]
- Residuals: do they behave? [1 test]
- Stability: are predictions stable? [1 test]
- Goodness of fit: how well does the model match the data? [1 test]

6 MODELS x 6 DIAGNOSTIC TESTS = 36 TESTS ON CO-INTEGRATING MODELS

Methods - robustness

Methods – robustness composites I

GLOSSARY OF STATISTICAL TERMS

COMPOSITE INDICATOR

STATISTICS PORTAL

Definition:

A composite indicator is formed when individual indicators are compiled into a single index, on the basis of an underlying model of the <u>multi-dimensional</u> <u>concept</u> that is being measured.

Robustness (health / strength)

Methods – robustness composites II

Coefficients		Residuals		Stability		Parsimony		Functional Form				
۷	8	U	۷	۵	U	۷	ß	۷	Ω	C	۷	8
Measure	Measure	Measure	Measure	Measure	Measure	Measure	Measure	Measure	Measure	Measure	Measure	Measure
2 points	2 points	1 point	2 points	1 point	1 point	2 points	2 points	1 Point	1 point	1 point	2 points	2 points

Static and dynamic models

Co-integrating models

(Coefficien	ts	Residuals	Stability	GOF
۲	Ê	U	A	A	۲
Measure	Measure	Measure	Measure	Measure	Measure
2 points	2 points	1 point	1 point	2 points	2 points

Results - rebound (long run)

Conclusions

- If changes in fuel efficiency are taken as the appropriate explanatory variable, we find **no** evidence of a long-run direct rebound effect in GB over the last 40 years.
- If changes in either the fuel cost of driving or fuel prices are taken as the appropriate explanatory variable we find good evidence of a direct rebound effect, with most estimates lying in the range 10% to 27% with a mean of 18%.
- The estimated size of the rebound effect does not depend on model quality.

Thanks!

Stapleton, L.M., Sorrell, S.R. and Schwanen, T. (Accepted) Estimating direct rebound effects for personal automotive travel in Great Britain. *Energy Economics*.

L.Stapleton@sussex.ac.uk