Unravelling load patterns of residential end-uses from smart meter data

eceee 2015, Presqu'ile de Giens, 3 June 2015

Tobias Boßmann, Joachim Schleich, Robert Schurk

Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe, Germany

Grenoble Ecole de Management, Grenoble, France

Motivation

Understanding hourly electricity load patterns is essential

• For power system management and capacity planning

End-use specific load profiles can shed light on hourly electricity consumption

- To understand electricity consumer behaviour
- To avoid system load peaks
- To estimate load management potentials

How to generate appliance specific hourly load profiles?

- Direct metering of a large number of individual end-uses is costly
- Consumers may oppose to end-use records due to data protection concerns

But: Smart-meter roll-out will generate massive amount of household load records.

⇒ We aim to demonstrate how these records can be transformed into load profiles.

Methodology I

Conditional demand analysis (CDA)

- To transform household-level metered load data into end-use specific load profiles
- Demand per time interval is regressed on a set of explanatory variables
- Information for the explanatory variables is typically collected via survey
- Parameter estimates represent the actual load profiles of the different end-uses

State of research

- Most existing studies focus on the US, rely on a low sample size or observation period
- None of the existing studies generate sub-hourly end-use load profiles

Data basis for the CDA applied in this study

- Half-hourly smart meter load data from a representative sample of 4,200 Irish households
- Recorded between July 2009 and December 2010 (17 months) by the Irish regulator CER
- Plus: household survey on socio-economic characteristics, appliance stock and building
 Fraunhofer

3

Methodology II

Set-up of the CDA

- OLS regression for 48 half hours of nine typical days (432 regressions)
- 40 explanatory variables, considering non-linear effects (e.g. for TVs or nb. of adults)
- Natural logarithm for dependent variable

Generation of load profiles

- Parameter estimates of the end-uses are transformed from logarithmic to linear
- Insignificant coefficients are set to zero
- The 48 coefficients equal the load profile

Application to Irish electricity demand

Partial decomposition of Irish system load

Dependent variable

✓ Mean half-hourly electric load

Explanatory variables

- ✓ Number of adults and children
- ✓ Electricity saving efforts
- ✓ Building type and age
- ✓ Building insulation
- ✓ Heating system
- \checkmark Share of energy saving bulbs
- ✓ Equipment with white appliances
- Equipment with consumer electronics

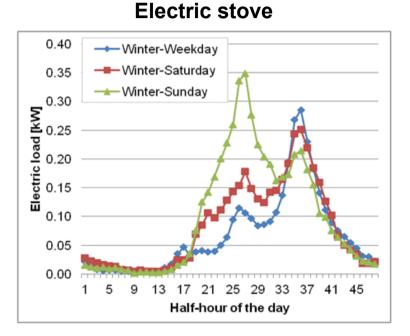
Results I Econometric analysis

Excerpt of regression results for the typical winter weekday							
		1 (12.00 to 12.30 am)	9 (4.00 to 4.30 am)	17(8.00 to 8.30 am)	25 (12.00 to 12.30 pm)	33 (4.00 to 4.30 pm)	41 (8.00 to 8.30 pm)
white goods	stove	0.021*	0.004	0.047***	0.095***	0.137***	0.089***
	washing	0.005	0.001	0.044	0.067	0.026	-0.025
	dryer	0.051***	0.015***	0.106***	0.138***	0.149***	0.131***
	dish_washer	0.1***	0.031***	0.117***	0.033**	0.06***	0.225***
	freezer	0.043***	0.038***	0.03*	0.058***	0.074***	0.034**
	water_pump	0.029**	0.029***	0.043**	0.029*	0.027	0.047**

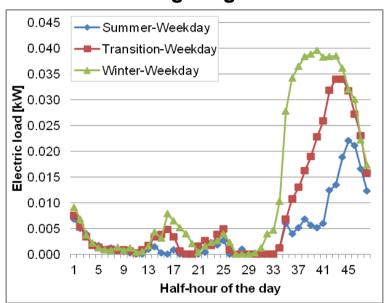
Note: *** indicates significance at p<0.01, ** indicates significance at p<0.05 and * indicates significance at p<0.1 in an individual two-tailed t-test based on robust standard errors

General

• Coefficient of determination for the 432 regressions varies between 25% and 50%


Results on electric end-uses

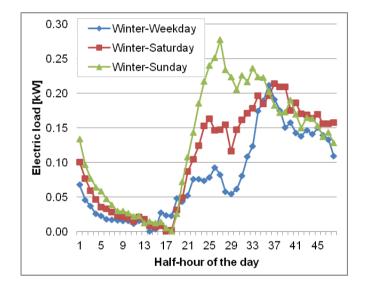
- Dish washers, dryers, freezers and ICT: significant during nearly all half-hours
- Stove, lighting and TVs: coefficients are statistically significant in day/evening/night times
- Washing machines: not statistically significant due to lack in heterogeneity
- Laptops: significantly higher use during evening and night, compared to day time


5

Results II Generation of load profiles

Load profiles are generated for:

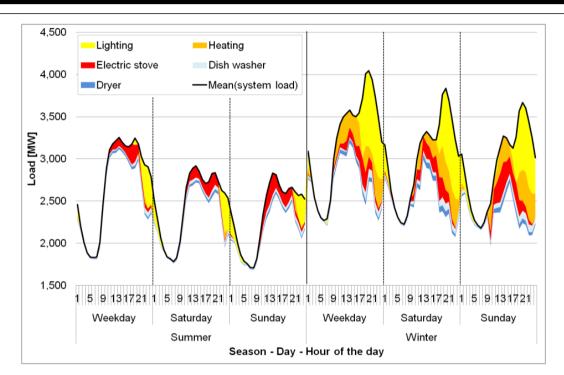
- Electric stove
- Dishwasher
- Dryer


- Lighting (based on energy saving bulbs)
- TV (for two and more TVs, ≥21")
- Freezer (stand-alone)
- Heating (night-storage)

Lighting

Results II Generation of load profiles

Load profile for two TVs (≥21")


How to explain the peak at 1:30 pm on a Sunday?

Results III Application of profiles to 2011 Irish demand

8

Partial decomposition of 2011 Irish system load

- On winter Sundays at 10pm, lighting accounts for up to 0.9 GW or 24% of the Irish load
- Electric heating and stoves make up for up to 10% of the overall winter load •
- Load of dryers and dishwashers never exceeds 3% of the overall system load

Discussion and conclusion

Content-wise

- The generated load profiles allow **understanding up to 40%** of the Irish system load
- The winter evening **load peak** is primarily driven by **lighting and electric heating**, the lower midday load peak is related to electric stoves
- Energy efficiency should be the first choice: reducing lighting demand by 33% could make the **peak load drop** by 8%, reducing the need for back-up capacity
- Load shifting should focus on electric heating (rather than on white goods)

Methodology-wise

- CDA works particularly well for **electricity-intensive** end-uses, for lighting and for end-uses with **well-mixed ownership patterns**
- Approach stands out from existing studies by generating load profile for lighting
- With increasing availability of **smart meter data**, similar analyses could easily be carried out for **other countries** or regions
- Future studies could integrate weather and geographic data and more technical data

Thank you for your attention!

