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Abstract
With increasing shares of intermittent renewable energy sourc-
es in the power mix, managing residential loads is seen as an 
emerging option for balancing supply and demand in the sys-
tem, reducing the need for investments in additional electricity 
generation and transmission infrastructure. At the same time 
smart meters endow a growing number of utilities and system 
operators with detailed information on individual households’ 
load profiles, but they usually provide no information on the 
actual end-use activities. Understanding residential electricity 
usage patterns, however, is critical for designing effective ener-
gy efficiency and load management programs. Thus, the aim of 
this paper is to elicit load patterns of individual end-uses from 
smart metering household data and to assess their implication 
for national energy system management.

This paper combines half-hourly load records with survey 
data from 4,200 households participating in a representative 
smart meter project in Ireland to econometrically estimate 
end-use-specific load profiles, controlling for demographic and 
buildings characteristics. For each of nine “typical days”, repre-
senting combinations of different seasons and days of the week, 
we estimate 48 reduced form electricity demand equations. It 
was found that distinguishing load profiles between workdays 
and weekends proved essential, in particular for electric stoves, 
dishwashers and TVs. Calibrating our estimated load profiles 
for five household end-uses to the actual load curve of Ireland 
in 2011, we are able to explain up to 40 % of the total system 
load. Our estimates imply that that lighting and electric ac-

count for about a third of the winter evening peak load in the 
Irish power system, but their load profiles differ substantially 
between seasons.

To reduce the Irish system load peak energy efficiency poli-
cies should focus on lighting and thermal insulation. We find 
that energy efficient lighting and a wide-ranging technology 
switch from electric heating to heat pumps may lead to a reduc-
tion in the winter evening peak load by 17 %. Finally, policies 
promoting load-shift should address electric heating before tar-
geting other end uses like driers or dishwashers.

Introduction
Gaining a better understanding of the factors governing elec-
tricity load patterns is conducive to effective power system 
management and capacity planning. For example, end-use-spe-
cific load profiles help grid operators and utilities to understand 
electricity usage behaviour and to identify the drivers of system 
load peaks, in particular when these profiles exhibit high tem-
poral resolution. They also allow identifying and estimating the 
potential of different end-uses for load management or design-
ing tariff programmes aimed at lowering or shifting loads in the 
residential sector (e.g. Bradley et al. 2012; Cappers et al. 2012; 
Torriti et al. 2010). Generating end-use-specific load profiles, 
however, may be costly, since this typically involves direct me-
tering of individual end-uses in a large number of households 
over a sufficiently long period. In contrast, deriving end-use-
specific load profiles from measuring households’ total load 
via smart meters is less expensive, since each household then 
only requires a single recording device. Due to the Electric-
ity Directive (European Union 2009), metered customer data 
with high temporal resolution will be readily available in most 
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EU countries in the near future. Italy and Sweden have already 
completed a full roll-out and 14 countries aim to equip at least 
80 % of all customers with smart meters by 2020 (CEER 2013)1. 
In general though, smart meter data provides no information 
on the actual end-use activities. Such information, however, is 
vital for designing effective load management, energy efficiency 
or energy rebate programs.

Conditional demand analysis (CDA) may be employed to 
transform household-level metered load data into end-use spe-
cific load profiles. For each time interval, household electricity 
demand is regressed on a set of explanatory variables including 
appliance stock and usage time, weather data, socio-economic 
information, and building characteristics. The parameter esti-
mates for the different time intervals may then be used to to 
construct load profiles for the different end-use activities. The 
majority of these studies were conducted in the USA (see Ta-
ble 1). Aigner et al. (1984) employ hourly measured data to 
generate a daily load profile for nine end-uses employing 24 re-
gressions, i.e. one for each hour of a day. However, since load 
data was only available for three metered months spread over 
three years, their findings cannot be generalized. The remain-
ing studies in Table 1 rely on observation periods of at least 
one year. In addition to household-level data, Brodsky et al. 
(1988), Blaney et al. (1994) and Morch et al. (2013) benefit from 
sub-metered data for selected end-uses, such as refrigerators 
or washing machines. While sub-metered data enables precise 
measurements of selected end-uses, such data is costly and 
only available for a small sample of households, thus limiting 
the generalization of findings. In general, studies vary by the 
number of end-uses and by the types of days (weekdays versus 
weekend days) considered. Most CDA-based load profile stud-

1. Member States may carry out a cost-benefit analysis prior to implementing 
smart metering systems (European Commission 2012). See (Jennings 2013) for 
an assessment of the Irish strategy.

ies rely on household level data but suffer from a low sample 
size, or a short observation period, which does not allow for 
load profiles which differ across seasons.2 None of the existing 
studies provides sub-hourly end-use load profiles based on a 
large sample size.

In this study, we estimate end-use specific load profiles with 
high temporal resolution for households in Ireland, capturing 
half-hourly, weekly and seasonal differences. These profiles are 
based on econometric analyses employing data from a smart 
metering pilot project, which included more than 4,200 house-
holds. In this pilot project, half-hourly load records were 
metered over the course of 17 months in 2009/2010.3 Using 
half-hourly data our analysis is supposed to represent real con-
sumption patterns more accurately compared to hourly assess-
ments. Relying on hourly data, for example, is likely to underes-
timate peak loads, which tend to occur for a fraction of an hour 
only. That means, the higher the temporal resolution of the load 
data, the lower the error of averaging. To assess the potential 
of end-use-specific energy efficiency improvements and load 
shifting, we relate our estimated load profiles to the observed 
Irish electricity demand in 2011, and quantify the contribution 
of key measures to reducing peak demand.

The remainder of this paper is organized as follows: First, 
we describe the data and the methodology employed. Subse-
quently, we present the results of the econometric analysis, 
the end-use specific load profiles, the validity checks and our 
application to the total load in the Irish power system. Last, 
we discuss the major findings and highlight the policy impli-
cations.

2. In their survey of empirical studies, Swan and Ugursal (2009) conclude that a 
CDA only provides reliable insights if data from hundreds or even thousands of 
households is used.

3. We are not aware of any other smart metering project of a comparable sample 
size or observation period, where data is publicly available.

Table 1. Overview of studies applying CDA to generate load profiles for end-uses. 

 Aigner et al. 
(1984) 

Brodsky et al. 
(1988) 

Bartels et al. 
(1992) 

Blaney et al. 
(1994) 

Firth et al. 
(2008) 

Morch et al. 
(2013) 

Survey-related information 

Temporal resolution 15 min hourly 15 min hourly 5 min hourly 

Observation period 
[months] 

3 (over 
3 years) 

24 15 12 24 n/a 

Sample size 80–132 n/a 400 181 72 75 

Country USA USA AUS USA UK NO 

Regression/load profile-related information 

Number of end-uses  9 7 10 15 4 5 

Use of sub-metered data no Yes no yes (monthly) No yes (1-minute) 

Temporal resolution hourly hourly hourly hourly 5 min hourly 

Distinction of seasons summer only none 12 individual 
months 

4 n/a 4 

Distinction of weekdays*  none WD/WE WD/WE WD/WE n/a WD/WE 

* WD = weekday, WE = weekend  
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Methods

DATA
Our empirical analysis relies on the load records from a smart 
metering trial project conducted by the Commission for En-
ergy Regulation Ireland (CER), the Sustainable Energy Author-
ity of Ireland (SEAI) and the Department of Communications, 
Energy and Natural Resources (DCENR) for customers of the 
largest Irish utility “Electric Ireland”. The data set is publicly 
available on the web4 and has been previously been used in a 
few studies5. Households were selected to obtain a representa-
tive sample for Ireland in terms of geographical location, social 
class, building type and family status. The project aimed at a 
better understanding of the benefits of smart meter data and 
their influence on electricity usage patterns. In addition, the in-
sights gained were used to assess the costs and benefits of a na-
tionwide smart meter rollout. In more than 5,000 households 
the existing mechanical meters were replaced by smart meters. 
These households were metered for 536 days (14 July 2009 un-
til 31 December 2010).6,7,8 The electricity consumption of each 
household (in kWh) was measured in intervals of 30 minutes 
(ISSDA 2014). In total, more than 100 million load values were 
measured. To allow for meaningful analyses, we corrected the 
data for clock changes. The average household in the sample 
consumed 4,300 kWh in 20109. The mean maximum load was 
6.5 kW.

In addition, an extensive survey was conducted to gather 
information about the socio-economic characteristics of the 
household, the appliance stock and the building. Thus, the data 
collected includes, amongst others, the number of occupants 
(adults and children) living in the household, the respond-
ent’s attitude towards environmental issues, the type and age 
of the building, building insulation, and number of end-uses 
(for 16 different types). A large share of the households did not 
respond to all the questions. For example, about 60 % of the 
survey households failed to report income, and 50 % did not 
provide information about the size of the dwelling (floor area).

4. The data is provided by ISSDA (2014).

5. This data has also been used in other publications: McLoughlin et al. (2012) 
run multivariate regressions to assess the impact of dwelling and occupant 
variables as well as electrical end-uses (in a separate regression) on (1) half-hourly 
household electricity demand, (2)  daily load factor, (3)  daily maximum demand 
and (4)  maximum time-of-use parameter. In contrast, our analysis performs a 
multivariate regression for each half-hour period of selected typical days. McLoughlin 
et al. (2013) forecast system demand employing times series analyses. Duffy et al. 
(2010) generate domestic electricity load profiles using Markov Chain modelling, but 
do not look at individual end-use activities. Di Cosmo et al. (2014) explore the effects 
of introducing time-of-use pricing.

6. The data may be accessed via the Irish Social Science Data Archive – www.
ucd.ie/issda.

7. The metering campaign also included approximately 500 small and medium-
sized enterprises. Data from these enterprises is not included in our analysis.

8. The initial target of the survey was to assess the impact of TOU tariffs and 
information stimuli to household consumption behavior. After a pre-trial period of 
6 months, all households, except a control group of 1,000 households, received 
a specific TOU tariff and an information stimuli. The TOU tariff provided graded 
prices for day, night (11.00 pm to 8.00 am) and peak hours (5.00 pm to 7.00 pm) 
(CER, 2011). Given that the households were subject to different stimuli would 
make it necessary to restrict the CDA to the control group. However, Di Cosmo et 
al. (2014) found out that the only significant impact of the stimuli can be observed 
with respect to the TOU tariff in peak hours. In addition, the results of the CDA 
showed that using the entire sample of households delivers more robust and 
significant results than limiting the sample to the households of the control group. 
Thus, the CDA was applied to the load records of all households.

9. The average electricity consumption of an Irish household in 2010 was equal 
to 5,300 kWh (SEAI 2013).

ECONOMETRIC MODEL
In the first step, ordinary least squares regression methods are 
employed to estimate reduced form household electricity con-
sumption equations using cross-sectional data. We distinguish 
three seasons (summer, winter, and transition period): the win-
ter period from November 1 to March 20, the summer period 
from May 15 to September 14, and the transition period covers 
the times between the summer and the winter periods. For each 
season, we consider three days of the week, i.e. weekday, Sat-
urday and Sunday/public holiday. Thus, we estimate demand 
functions for nine typical days. 

The dependent variable is the mean half-hourly electricity 
consumption for a typical day. We therefore run 48 regressions 
for each of the nine typical days, i.e. a total of 432 regressions. 
As is standard in the literature, we use the natural logarithm of 
electricity consumption in the actual model specification, since 
log-transformed variables tend to better meet the assumptions 
required for parametric tests. The explanatory variables are 
grouped in seven categories (see Table 2). Socio-demographic 
variables include the number of household members by age 
group. Note that our specification allows for non-linearity in 
the number of household members per age group on electricity 
use. Thus, we do not presume the marginal effect on electricity 
consumption of each household member (per age group) to be 
the same. To prevent singularity of the regressor matrix, the lo-
west category (i.e. number of adults = 1 and number of children 
= 0) is not included in the regression. A dummy variable cap-
tures the stated household electricity-saving efforts. Save takes 
on the value of one if respondents strongly agreed or agreed 
with the following statement: “I/we have already done a lot to 
reduce the amount of electricity I/we use”. Building characte-
ristics comprise the type and age of the building. In addition, 
for households, where electricity is the main heating fuel, in-
formation about building insulation is also taken into account. 
More specifically, we interact the variables for wall insulation, 
the share of double glazed windows, attic insulation and any 
alternative heating system with the electric heating system (i.e. 
electric central heating/storage heating or plug-in heaters). For 
all households with electricity as the main or auxiliary heating 
fuel, information about the type and number of space and wa-
ter heating installations is available (i.e. immersion heater, im-
mers_heater, vs. instantaneous shower water heater, shower_1 
and shower_2). The share of energy-saving bulbs compared to 
the overall number of lighting points (lights) is also included 
as an explanatory variable. Last but not least, fairly detailed in-
formation is available on the type and number of white goods 
and ICT equipment in a household. Similar to the number of 
household members, we allow non-linear effects for most end-
uses. For example, the average TV use in a household with one 
TV may differ from the average TV use in a household with 
two TVs, all other things being equal. Because of limited data 
availability, household floor area and household income are not 
included as explanatory variables. Arguably, income effects are, 
at least to some extent, captured by building type and appliance 
stock.

GENERATING LOAD PROFILES
In the second step, load profiles are generated for each of the 
nine typical days using the parameter estimates from the re-
gression analysis. First, all the coefficients are transformed 
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from logarithmic to linear and coefficients with p > 0.1 are set 
to zero. The 48 coefficients of an end-use type for a specific 
typical day then represent the respective half-hourly load pro-
file. We conduct plausibility checks for end-use types where a 
substantial share of the coefficients is zero. For example, insig-
nificant coefficients would make sense during daytime hours 
for lighting but not during evening hours.

APPLYING THE LOAD PROFILES TO THE ELECTRICITY DEMAND OF 
IRELAND
To assess the potential of end-use-specific energy efficiency 
improvements and load shifting for managing the electricity 
system load of Ireland, we relate our estimated load profiles 
to the Irish electricity demand. To do so, we rely on two types 
of existing data for Ireland. First, for the year 2011 (but not 
for 2010 or 2009), the Sustainable Energy Authority of Ireland, 
SEAI (2013), provides estimates of residential annual electri-
city demand by end uses. These figures are calculated based on 
standard values for ownership rates, end-use consumption and 
data on average appliance usage. We use these annual figures to 
calibrate our parameter estimates for 2009/2010. The end-use-
specific annual demand is spread over the individual load pro-
files of the nine typical days in proportion to their frequency 
in 2011. The resulting load curves of residential end-uses allow 
a partial decomposition of the Irish system load curve in 2011 
into different end-uses. Second, to construct the system load 
curve, we use hourly load records from the European Network 
of Transmission System Operators for Electricity, ENTSO-E 
(2013). We scale these load records according to the annual 
Irish electricity demand in 2011 (SEAI 2012) so that the hourly 
load matches the final electricity demand after netting out the 
grid losses which were originally included in the ENTSO-E 
data.

Results

ECONOMETRIC ANALYSIS
Results from estimating the household electricity consump-
tion are displayed in Table 3 for twelve half-hour periods of a 
weekday in winter.10,11 Table 3 shows the coefficients after they 
were transformed from logarithmic to linear, i.e. they may be 
interpreted as the marginal effects on the level of electricity use 
in a particular half-hour period. Overall, the values for the co-
efficient of determination i.e. the (adjusted) R2 range between 
about 25 % and 50 %. Thus, the models appear to fit the data 
quite well, since they explain a fairly large share of the variation 
in half-hourly household electricity consumption. The predic-
tive power tends to be higher for half-hour periods in the even-
ing than in the morning.

For all half-hour periods, including also those not shown 
in Table 3 to save space, electricity consumption is positively 
and (statistically) significantly related to the number of adult 
household members, with larger households using more elec-

10. Outliers were removed from the sample based on Cook’s distance. Depending 
on the daytime this leads to a loss of 3 % to 5 % of the observations.

11. Due to limited space, the results for all half-hourly consumption regressions 
and for the other eight typical days cannot be presented here. They are available 
upon request from the authors. 

tricity. As expected, the effects of the number of adults vary 
significantly over the course of the day and are particularly low 
at night and during early morning hours. For all half-hour pe-
riods, the coefficient of adults is larger than the coefficient of 
children. Electricity use tends to be lower in households claim-
ing to have made electricity-saving efforts, but the difference 
is statistically significant only for a few hours (in the morning 
and in the evening).

For almost all half-hour periods, bungalows and detached 
houses are associated with significantly higher electricity con-
sumption than terraced houses (i.e. the base category), and 
semi-detached exhibit the same electricity use as terraced 
houses. In comparison, households with apartments are cor-
related with lower consumption for a considerable number 
of half-hour periods. Older houses are associated with higher 
electricity use12. The coefficients for age 30+ are significantly 
higher for most half-hour periods. 

The findings for the interaction terms associated with insula-
tion suggest that when electricity is the main heating fuel, better 
insulation tends to be associated with lower electricity use, in 
particular during the night and early morning hours. For a few 
night-time hours we find, somewhat unexpectedly, that attic 
insulation in households using electricity for heating purposes 
is associated with higher electricity consumption. 

Households with permanently installed electric heating 
devices (electric_heat) are associated with statistically signifi-
cantly higher electricity use from 8.30 am until about 0.30 am. 
The same holds for plug-in heaters, but with the bulk of elec-
tricity use taking place during daytime hours. As electric_heat 
includes central heating and night storage heaters, the relatively 
high electricity use in the late evening and night-time hours is 
likely due to the night storage heaters. Thus, the related night-
time electricity consumption may, to some extent, also explain 
the reduced electricity demand through insulation during the 
night. 

Night storage heaters, which are often also used for sanitary 
hot water generation, may also help to explain the statistically 
significant negative coefficient of instantaneous shower water 
heaters (shower_1 and shower_2) during night-time hours. The 
latter produce hot water during actual water withdrawal so 
that electricity consumption coincides with shower usage. In 
contrast, the electricity consumption of a shower that is linked 
to a night storage heater is temporally decoupled from the ac-
tual shower usage. Thus, instantaneous shower water heaters 
are characterised by negative electricity consumption during 
the night as opposed to those showers relying on night storage 
heaters.

Unlike for the other typical days, but similar to the findings 
by McLoughlin et al. (2012), the coefficient for showers dur-
ing daytime hours is not statistically significant for the typical 
weekday in winter (Table 3).

Immersion heaters are characterised by two periods of sta-
tistically significant usage on weekdays, from 6.00  am until 
11.30 am and again from 5.00 pm until 10.30 pm. On Satur-
days, coefficients are also significant for midday hours, and on 
Sunday for the entire period ranging from 7.30 am to 10.00 pm.

12. Results from F-Tests suggest that the coefficient associated with age 30+ is 
higher than the coefficient associated with age 10–30 in 36 of the 48 half-hour 
periods (at p < 0.05), in particular during the daytime.
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Table 2. Overview of explanatory variables (acronyms).

Category Variable Definition Unit Mean Std. dev. Min. Max. 

Socio-
demographics 

Number of adults living in the 
household (# of adults) 

1 0/1 0.229 0.420 0 1 

2 0/1 0.493 0.500 0 1 

3 0/1 0.151 0.358 0 1 

4 and more 0/1 0.126 0.289 0 1 

Number of children living in the 
household (# of child.) 

0 0/1 0.710 0.454 0 1 

1 0/1 0.118 0.323 0 1 

2 0/1 0.107 0.309 0 1 

3 and more 0/1 0.065 0.215 0 1 

Electricity saving efforts (save) No/Yes 0/1 0.655 0.576 0 1 

Building 

Building type (build_type) 

Terraced house 0/1 0.017 0.129 0 1 

Bungalow (bungalow) 0/1 0.252 0.434 0 1 

Detached house (detached) 0/1 0.265 0.466 0 1 

Semi-detached house 
(semi_det) 0/1 0.320 0.441 0 1 

Apartment (apt) 0/1 0.145 0.352 0 1 

Building age 

Less than 10 years old 0/1 0.199 0.267 0 1 

10–30 years old (age 10–30) 0/1 0.292 0.455 0 1 

more than 30 years (age 30+) 0/1 0.509 0.502 0 1 

Insulation (for 
buildings with 
electric heating 
only) 

Wall insulation (wall_insulation) No/Yes  0/1 0.627 0.484 0 1 

Share of double glazed windows 
(double-glazed) Share categories 0, 0.25, 0.5, 

0.75, 1 3.342 1.350 1 4 

Attic insulation (attic_insulated) No/Yes  0/1 0.899 0.301 0 1 

Additional non-electric heating 
(additional_heat) No/Yes  0/1 0.935 0.246 0 1 

Heating 

Electric central/storage heating 
(electric_heat) No/Yes  0/1 0.043 0.202 0 1 

Plug-in heater 

0 0/1 0.699 0.459 0 1 

1 (plugin_1) 0/1 0.233 0.423 0 1 

2 or more (plugin_2) 0/1 0.068 0.221 0 1 

Electric immersion heater 
(immers_heater) No/Yes  0/1 0.769 0.423 0 1 

Electric shower 

0 0/1 0.306 0.461 0 1 

1 (shower_1) 0/1 0.638 0.480 0 1 

2 or more (shower_2) 0/1 0.056 0.219 0 1 

Lighting Share of energy-saving bulbs 
(light) Share categories 0, 0.25, 0.5, 

0.75, 1 1.834 1.425 0 4 

White goods 

Electric stove (stove) No/Yes  0/1 0.773 0.421 0 1 

Washing machine (washing) No/Yes  0/1 0.983 0.148 0 1 

Dryer (dryer) No/Yes  0/1 0.683 0.466 0 1 

Dishwasher (dish_washer) No/Yes  0/1 0.672 0.470 0 1 

Stand alone freezer (freezer) No/Yes  0/1 0.496 0.500 0 1 

Water pumping system 
(water_pump) No/Yes  0/1 0.195 0.393 0 1 

ICT 

Router/broadband modem 
(router) No/Yes  0/1 0.697 0.460 0 1 

Desktop PC (desk_PC) No/Yes  0/1 0.472 0.498 0 1 

 Number of laptop PCs 

0 0/1 0.472 0.499 0 1 

1 (laptop_1) 0/1 0.428 0.495 0 1 

2 or more (laptop_2) 0/1 0.113 0.279 0 1 

Number of game consoles 

0 0/1 0.660 0.474 0 1 

1 (console_1) 0/1 0.226 0.418 0 1 

2 or more (console_2) 0/1 0.114 0.280 0 1 

Number of TVs smaller than 21" 

0 0/1 0.346 0.476 0 1 

1 (TV<21”_1) 0/1 0.396 0.489 0 1 

2 or more (TV<21”_2) 0/1 0.258 0.392 0 1 

Number of TVs larger than 21" 

0 0/1 0.157 0.364 0 1 

1 (TV≥21”_1) 0/1 0.510 0.500 0 1 

2 or more (TV≥21”_2) 0/1 0.333 0.441  1 
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Table 3. Regression results for a typical weekday during winter. 

  1 (12.00 to 
12.30 am) 

9 (4.00 to 
4.30 am) 

17(8.00 to 
8.30 am) 

25 (12.00 to 
12.30 pm) 

33 (4.00 to 
4.30 pm) 

41 (8.00 to 
8.30 pm) 

#a
du

lts
 2 0.066*** 0.017*** 0.176*** 0.236*** 0.320*** 0.302*** 

3 0.161*** 0.025*** 0.218*** 0.346*** 0.520*** 0.43*** 
4 0.201*** 0.031*** 0.428*** 0.413*** 0.675*** 0.637*** 

#c
hi

ld
. 1 -0.009 -0.002 0.194*** 0.043** 0.112*** 0.161*** 

2 -0.003 0.017** 0.385*** 0.097*** 0.288*** 0.315*** 
3 0.072*** 0.016* 0.518*** 0.207*** 0.460*** 0.398*** 

 save -0.01 -0.004 -0.037** 0.017 0.007 -0.044*** 

bu
ild

_t
yp

e bungalow 0.071*** 0.045*** 0.093*** 0.047** 0.014 0.098*** 
detached 0.066*** 0.04*** 0.09*** 0.067*** 0.042* 0.109*** 
semi_det 0.013 0.007 0.014 0.01 0.001 0.012 

appt -0.088** -0.014 -0.035 -0.046 -0.152** -0.191*** 

ag
e age 10–30 0.048*** 0.006 0.072*** 0.081*** 0.109*** 0.02 

age 30+ 0.066*** 0.014** 0.102*** 0.178*** 0.196*** 0.024 

in
su

la
tio

n wall_insulation -0.022 0.001 -0.02 -0.027 0.013 0.004 
double-glazed -0.016** -0.005* 0.006 -0.015* -0.007 -0.019* 
attic_insulated 0.029 0.029** 0.06 -0.025 -0.072* -0.01 
additional_heat 0.001 -0.026* -0.079 -0.057 -0.111* -0.007 

he
at

in
g 

electric_heat 0.062* 0.009 0.038 0.127*** 0.122** 0.07 
plugin_1 0.064 0.019 0.044 0.213*** 0.296*** 0.111 
plugin_2 0.115* 0.043* 0.077 0.342*** 0.4*** 0.159* 

immers_heater -0.007 -0.003 0.021 0.005 0.012 0.031* 
shower_1 -0.027*** -0.008* 0.031* -0.015 -0.01 0.009 
shower_2 -0.004 -0.001 0.094*** 0.014 0.035 0.052 

 light 0.009*** 0.001 0.006 0.004 0.005 0.038*** 

w
hi

te
 g

oo
ds

 

stove 0.021* 0.004 0.047*** 0.095*** 0.137*** 0.089*** 
washing 0.005 0.001 0.044 0.067 0.026 -0.025 

dryer 0.051*** 0.015*** 0.106*** 0.138*** 0.149*** 0.131*** 
dish_washer 0.1*** 0.031*** 0.117*** 0.033** 0.06*** 0.225*** 

freezer 0.043*** 0.038*** 0.03* 0.058*** 0.074*** 0.034** 
water_pump 0.029** 0.029*** 0.043** 0.029* 0.027 0.047** 

IC
T 

router 0.057*** 0.014** 0.047** 0.039* 0.086*** 0.129*** 
desk_PC 0.041*** 0.031*** 0.043** 0.022 0.03* 0.045** 
laptop_1 0.019 0.012** 0.026 -0.052*** -0.074*** -0.005 
laptop_2 0.078*** 0.031*** 0.098*** -0.016 -0.048* 0.048 

console_1 0.057*** 0.017*** 0.054** 0.021 0.058*** 0.063*** 
console_2 0.084*** 0.03*** 0.073** 0.008 0.117*** 0.095*** 
TV<21”_1 0.01 0.006 -0.007 0.017 0.049*** 0.048** 
TV<21"_2 -0.01 0.005 0.026 0.035* 0.077*** 0.052** 
TV≥21"_1 0.031* -0.001 0.006 0.015 0.051** 0.081*** 
TV≥21"_2 0.068*** 0.015** 0.023 0.078*** 0.124*** 0.142*** 

 const. 0.117*** 0.069*** 0.127*** 0.118*** 0.153*** 0.345*** 
 Adj. R² 0.302 0.304 0.383 0.32 0.43 0.5 
 N 3,837 3,803 3,795 3,810 3,806 3,825 

 

 
 

Note: *** indicates significance at p < 0.01, ** indicates significance at p < 0.05 and * indicates significance at p < 0.1 in an individual two-
tailed t-test based on robust standard errors.
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As expected, higher shares of energy-efficient light bulbs im-
ply lower electricity consumption, especially during the morn-
ing and evening periods, i.e. at times where household lighting 
needs are highest.

The coefficient of electric stoves is positive and significant for 
all half-hour periods apart from the periods between midnight 
and 7.30 am. As expected, the coefficients tend to be highest 
around lunch and dinner time. The parameter estimate associ-
ated with a washing machine is not statistically significant at 
any of the half-time periods. This finding is counterintuitive, 
but may be partially explained by the fact that almost all house-
holds own a washing-machine, leaving little variation to be 
exploited by the regression analysis13. The coefficients of dish-
washers and dryers are statistically significant for all half-hour 
periods of a day. Arguably, some households may program 
these end-uses so they run during times of low human activity 
i.e. at night. However, note that the coefficients of dryers are 
highest during daytime and those of dishwashers during the 
early morning and evening hours, reflecting the times of most 
intensive usage. For freezers and water pumps, we also find sta-
tistically significant results over the course of all typical days.

The parameter estimates associated with a router and a desk-
top PC exhibit the expected positive sign and are statistically 
significant for almost all half-hour periods. The coefficients for 
game console variables are positive and significant for almost all 
half-hour periods, apart from late morning hours. As expected, 
the coefficients for console_2 are larger than for console_1 for 
most half-hour periods14. At first, the findings for laptops are 
somewhat surprising, suggesting (statistically) significant high-
er use during the evening and night-time hours, but lower use 
during the daytime. The latter may be explained by a likely neg-
ative correlation of laptops and presence at home: people with 
laptops are more likely to be at work during daytime hours. For 
smaller TVs (<21” screen) and single large TVs (≥21” screen) 
the coefficients are found to be significant for periods between 
3.00 pm and midnight, peaking around 4.30 pm but remaining 
on a relatively high level during the evening hours. Results for 
households with two large TVs are significant for nearly the 
entire day (except from 5.00 am to 9.00 am). The associated 
coefficients imply electricity use of TVs throughout the entire 
day. This may be explained by more or less constant use of at 
least one TV or by stand-by consumption. About two thirds 
of the electricity consumption of TVs occurs between 3.30 pm 
and midnight, with a consumption peak at 5.30 pm. 

Finally, the intercept term, which also captures the effect of 
those end-uses not included as explanatory variables (e.g. re-
frigerators), is positive and statistically significant for all half-
hour periods. 

In general, the findings of our regression results are quite 
intuitive. Apart from the findings for showers, the estimated 
coefficients exhibit the expected positive sign. Similarly, the 
coefficients’ level of significance and their magnitudes over the 
course of a day reflect expected use patterns.

The findings for the other typical days are generally quite 
similar to those presented for the winter weekday in Table 3. 

13. For summer days and for morning hours of days in the transition period, the 
coefficients for washing machines tend to be statistically significant. 

14. Results from F-Tests suggest that the coefficient for console_2 is higher than 
the coefficient for console_2 in 32 of the 48 half-hour periods (at p < 0.05).

We observe seasonal variation for heating technologies, light-
ing, washing machines, dryers, as well as the categories #of 
adults≥4 and #of child≥3, all of which exhibit, as expected, larg-
er coefficients during the winter. In terms of variations across 
the different days of the week, the main differences are found 
in electric stoves, dishwashers, and TVs. Unlike for weekdays, 
where coefficients of these variables peaked during evening 
hours, they tend to exhibit a more elevated level during day-
time of weekend days.

In sum, estimating reduced-form household electricity equa-
tions relying on consumption data with high temporal resolu-
tion appears to work particularly well in our data set for elec-
tricity-intensive end-uses, for lighting and for end-uses with 
well-mixed ownership patterns, such as dryers, dishwashers, 
electric stoves and electric heating. Similar to Aigner et al. 
(1984), Brodsky et al. (1988), Blaney et al. (1994), or Aydinalp 
et al. (2008), we find less robust results for end-uses with a low 
rated power, for those owned by a few households only, or by 
almost all households. The impact of end-uses with a low rated 
power on total metered electricity use is difficult to isolate. For 
end-uses which tend to be owned by only a few or by almost 
all households, there is little variation in the explanatory vari-
able. In this case, regression techniques are bound to fail because 
the regressor matrix is almost singular, and the standard errors 
are very large. None of the reviewed studies is able to generate 
a lighting profile of high temporal resolution distinguished by 
season and weekday. Given that every household has lighting 
installed, the electricity use of lighting is typically captured via 
the intercept (e.g. in Brodsky et al. (1988), Blaney et al. (1994)). 
Our findings suggest that reasonable lighting profiles may be 
obtained using the share of installed energy-saving bulbs.

LOAD PROFILES
In Figure 1 to Figure 6 we depict exemplary load profiles that 
are generated from the end-use-specific regression coefficients. 
The load profile of an electric stove in Figure 1 differs distinc-
tively between weekdays, Saturdays and Sundays. The electric-
ity consumption at lunch time is three times higher on Sundays 
than on weekdays, while the electricity consumption during 
supper time is higher on weekdays than on Sundays. The con-
sumption levels on a Saturday range between the levels on a 
weekday and a Sunday. The load profile of a stand-alone freez-
er in Figure 2 reflects the expected higher cooling demand in 
summer. With respect to the daily load distribution, the profile 
is characterised by a continuous increase over the course of the 
day and three usage peaks that coincide with those of the load 
profile from the electric stove. The load profile of a dishwasher 
in Figure 3 shows a small peak in the morning on weekdays, but 
not on weekend days. Further, the shape of the load profile is 
quite similar for Saturdays and Sundays, but the level is slightly 
higher on Sundays. For weekdays and weekend days, major 
electricity consumption takes place during evening hours be-
tween 6:00 pm and 11:00 pm. The load profile for a dryer in 
Figure 4 is significantly higher during winter days than during 
summer days, probably because laundry frequently tends to be 
dried outdoors during the summer. 

Figure 5 depicts the lighting profile for weekdays in the three 
different seasons. The lighting profile is based on the energy 
savings per 25 % share of energy saving lights. The absolute 
values of the determined regression coefficients represent the 
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Figure 1. Load profile for an electric stove.

Figure 3. Load profile for a dishwasher.

Figure 5. Load profile for lighting (energy savings per 25 % share 
of energy saving lights).

Figure 6. Load profile for two TVs (≥21”).

Figure 4. Load profile for a dryer.

Figure 2. Load profile for a stand-alone freezer.
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mean system load. As expected, electric heating shows even 
stronger seasonal variations than lighting. More than 80 % of 
all electricity for space heating purposes is consumed during 
the winter period. The load for electric heating is located pri-
marily between 9.00 am in the morning and 1.00 am at night, 
reaching up to 0.4 GW (i.e. up to 10 % of the mean system 
load) during the late evening across all days of the week. Elec-
tricity demand for dryers varies substantially by season and by 
days of the week. During the winter period, the daily electricity 
demand for dryers is nearly twice as high as during the sum-
mer period. On weekdays and Saturdays, the load for dryers is 
highest in the evening (up to 0.05 and 0.07 GW, respectively), 
whereas on Sundays, it is highest around midday (0.04 and 
0.06 GW respectively). However, the load for dryers is relatively 
low and never exceeds 2.2 % of the system load. The electricity 
demand by electric stoves varies mainly across different week-
days, peaking on weekdays at around 6.00 pm (at 0.25 GW dur-
ing the winter and 0.32 GW during the summer period) and on 
Sundays around midday (at 0.25 GW during the winter period 
and 0.36 GW during the summer period). On winter Sundays 
at lunch time, electric stoves account for 11.0 % of the system 
load. The load distribution of dishwashers is similar to that of 
electric stoves, just shifted slightly towards later hours during 
the day. The load of dishwashers ranges between 0.01 GW (dur-
ing night-time hours) and 0.06 GW in peak periods and never 
exceeds 2.6 % of the system load.

Discussion
In sum, our estimated load profiles help explain the pattern 
of the load curve of Ireland and to better understand differ-
ences in load across seasons and different days of the week. 
The regression-based load profiles for five end-uses facilitate 
the decomposition of a substantial part of the system load (up 
to 40 %), in particular for winter days. The evening load peak 
on winter days is mostly related to the use of lighting and elec-
tric heating, accounting for 22 % and 11 % of the overall load, 
respectively. The lower midday load peak is partially caused by 

saving in a half-hour period, i.e. a negative profile. However, 
in absolute terms, the distribution profile of savings may be 
interpreted as an indicator for the lighting profile since absolute 
savings are higher for higher loads. As can be seen in Figure 5, 
electricity consumption is highest during the winter and starts 
earlier in the evening than during the transition period or 
the summer because the sun sets earlier during winter days. 
Figure 6 shows the load profile if households own two TVs 
with screens larger than 21 inches. The after-lunch peak in TV 
use on Sundays may be explained by the Irish TV programme. 
From 1.30 pm on, “The Sunday game” broadcasts live popular 
sports events like hurling and soccer, with average audience 
shares of over 40 % (RTE 2014). For weekdays and Saturdays, 
the load peak is at about 6.30 pm.

APPLICATION OF LOAD PROFILES TO THE ELECTRICITY DEMAND OF 
IRELAND
Final electricity demand of Ireland in 2011 equalled 24,881 GWh 
(SEAI, 2012). The corresponding system load curve is shown 
in Figure 7 in terms of the mean load at each hour for six of 
the nine typical days. A typical weekday or weekend day in 
winter is associated with an early afternoon local load peak of 
3.6 and 3.3 GW, respectively, and an evening global load peak 
of 4.0 and 3.7 GW, respectively, (around 8.00 pm). The summer 
profile is more balanced at a level of 3.2 GW during the daytime 
and a load of 1.8 GW during the night. The load peak in 2011 
for Ireland equalled 4.45 GW. Figure 7 illustrates the decom-
position of the system load curve into the individual end-use 
components lighting, heating, electric stoves, dishwashers and 
dryers as explained in Section 2.5. Our findings illustrate that 
electricity demand for lighting is characterized by low varia-
tion across different days of the week, but high variation across 
seasons. Specifically, the winter period accounts for nearly 60 % 
of annual demand. During this period, the load for lighting is 
concentrated on morning and evening hours, and ranges be-
tween 0.7 and 0.9 GW. In contrast, during the summer period, 
the load for lighting drops to between 0.2 and 0.5 GW. On win-
ter Sundays at 10.00 pm, lighting accounts for up to 24 % of the 

 
 

Figure 7. Daily load profile of system load and end-uses in Ireland in 2011. Source: own calculation based on data from ENTSO-E (2013) 
and SEAI  (2012; 2013).
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increasing availability of smart meter data, similar analyses 
could easily be carried out for other countries or regions. Fu-
ture studies could integrate weather and geographic data (e.g. 
temperature, heat degree days, solar radiation, and location), 
more technical details for end-uses (e.g. energy class, rated 
power) and additional information on household characteris-
tics (e.g. education, income, employment status)17. We find that 
constructing load curves based on econometric analysis works 
particularly well for electricity-intensive end-uses, for lighting 
and for end-uses with varied ownership patterns, such as dry-
ers, dishwashers, electric stoves and electric heating. In con-
trast, the impact of end-uses with a low rated power may be dif-
ficult to detect via econometric analysis. Similarly, for end-uses 
with little variation in ownership, the regressor matrix is almost 
singular and standard errors are large. Thus, the presented ap-
proach may not be suitable for identifying the load profiles of 
end-uses with very high or very low penetration rates (such as 
washing machines). Electricity use of these end-uses could be 
metered directly (at relatively low cost), in particular if they are 
designed as “smart appliances” that allow direct communica-
tion with the utility.

Conclusion and policy implications
Based on data from a large representative smart meter project 
in Ireland we employ econometric analyses to derive half-hour-
ly load profiles for major end-uses. Distinguishing between 
weekdays and weekend days proves essential, in particular for 
electric stoves, dishwashers and TVs. Likewise, the load profiles 
for lighting and electric heating differ substantially between 
summer, winter and the transition season. Validity checks re-
lying on data from time use surveys and on load data from the 
UK corroborate our findings. 

The derived load profiles allow for a better understanding 
and quantification of the factors driving observed loads in the 
electricity system. For example, calibrating our estimated load 
profiles for five household appliances to the actual load curve 
of Ireland in 2011, we are able to explain up to 40 % of the total 
system load. Our findings further suggest that electricity for 
lighting services accounts between 20 % and 25 % of the peak 
system load on winter weekday evenings. For electric heating, 
this share reaches up to 10 %. 

In particular, end-use specific load profiles provide valuable 
information for designing effective energy efficiency and load 
management programs, which help integrating fluctuating re-
newables into the power grid, lowering total capacity needs in 
the system, and saving costs for building and running genera-
tion and transmission infrastructure (e.g. Faruqui et al. 2010; 
Joskow 2012). For the Irish power system, this means lowering 
the winter peak, which determines capacity requirements on 
the supply side. End-use specific load profiles also allow quan-
tifying the likely contribution of these policy programs towards 
cutting peak demand. To reduce lighting-related peak demand 
during winter days, promoting the diffusion of energy efficient 
light bulbs and tubes will be particularly effective, potentially 

17. For our analysis, however, heterogeneity in whether conditions across our 
cross-sectional observations is unlikely to distort our estimates since weather 
conditions do not vary much for a particular point in time within the geographic 
region where the sample was drawn. 

electric stoves (approx. 11 %) (see also Leahy & Lyons 2010). In 
comparison, dishwashers and dryers only have a marginal im-
pact on the total load. The remaining gap, which is not explic-
itly explained by the load profiles, is related to other residential 
end-use activities (such as cooling devices, washing machines, 
information and communication technologies, hot water pro-
vision) as well as to electricity demand in the sectors industry, 
commercial, tertiary, agriculture and rail.

To reduce peak demand related to lighting and heating 
services during winter days, improving energy efficiency is a 
more sensible strategy than trying to shift loads to off-peak pe-
riods, unless electric heat storage systems are in place. Thus, 
incentivizing energy efficiency (e.g. CFLs, LEDs, electric heat 
pumps, insulation measures) seems most promising (see also 
Chiodi et al. 2013). To quantify the savings potential based 
on our load curves for lighting and heating, we assume that 
energy efficiency for lighting improves by one third (by using 
CFLs and LEDs rather than incandescent and halogen bulbs, 
e.g. Wall & Crosbie 2009) and that energy efficiency of elec-
tric heating improves by 67 % (by shifting all electric heating 
to heat pumps, e.g. Connolly et al. 2014). Neglecting potential 
rebound effects,15 these measures lower the evening peak load 
during a winter day by about 0.4 GW, which corresponds to a 
reduction of about 10 %, whereof about 8 percentage points are 
related to lighting16. In this case, the system load curve during 
the winter and the summer periods show similar levels of peak 
loads, which suggest a significantly lower need for peak load 
and back-up capacity. While less pronounced than the evening 
peak, the midday peak could also be shaved, e.g. by switching 
from electric ovens to microwaves or gas stoves. As pointed 
out by Borg & Kelly (2011), the trend towards microwaveable 
ready-cooked meals lowers electricity demand by approx. 30 %, 
which – according to our estimates – translates into a midday 
peak load reduction by nearly 0.2 GW or 6 %.

Moreover, peak loads can be reduced by shifting electricity 
use from peak hours to off-peak periods. According to (Gott-
walt et al. 2011), the most suitable end-uses for load shifting are 
heating and cooling, as well as washing machines, dishwashers 
and dryers. Our findings for Ireland suggest that electric heat-
ing has the largest potential for shifting in terms of winter peak 
load reduction, provided that heating systems are equipped 
with a heating storage unit. Assuming a shift of the entire heat-
ing capacity by a few hours would reduce peak load by about 
7 % or 0.25 GW. Of course, the potential to shift loads shrinks 
as conventional heating systems become more efficient, or are 
replaced by heat pumps or non-electric heating technologies.

In comparison, the potential to shift loads related to dish-
washers and dryers is rather small: 2.4 % or 0.1 GW peak load 
reduction for dishwashers and 1.4 % or 0.06 GW for dryers.

These findings are derived from a large sample, involving 
data from more than 4,000  households. Compared to other 
studies, our data also allowed for a fairly long observation pe-
riod of 18 months, high temporal resolution of half-hourly load 
data, and a rich set of explanatory variables. In general, with 

15. For lighting services, the direct rebound effect is likely to be small, i.e. well 
below 10 % (e.g. (Schleich et al. 2014)), but may be larger for heating services 
(e.g. (Sorrell et al. 2009)).

16. Part of the efficiency improvement in lighting may already have been realized 
since 2010 due to the ban on incandescent light bulbs in the EU.
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reducing the evening peak by up to 8 %. Peak time demand for 
electric heating could be lowered by policies incentivizing ther-
mal insulation, fuel switching (e.g. to gas-fired, solar thermal or 
geo-thermal heating systems) or the adoption of heat pumps. 
Based on estimates from the literature, we find that energy ef-
ficient lighting and shifting all electric heating to heat pumps 
lead to an overall reduction in the winter evening peak load 
by 10 %. 

Dynamic pricing provides financial incentives to shift de-
mand from peak to off-peak hours (Faruqui & Sergici 2010; 
Di Cosmo et al. 2014). While the EU Energy Services Directive 
2006/32/EC requires utilities to offer electricity tariffs which 
vary by load or by time of use, in practice, incentives to switch 
loads have often been low because the difference between peak- 
and off-peak tariff is too small. However, our findings suggest 
that electric heating exhibits the largest potential to shift loads 
away from the peak loads in the Irish residential sector, e.g. via 
heat storage systems. Thus, as an alterative to dynamic pric-
ing, direct load control systems for electric heating could be 
introduced (Ericson 2009). We also find that the potential of 
other end-uses suitable for load shifting such as dishwashers 
or dryers is small compared to electric heating. Thus, policies 
promoting load shift in the residential sector in Ireland should 
focus on electric heating before targeting other end uses, which 
require a direct interaction of the consumer and hence a spe-
cific tariff design.

Our findings also allow assessing the impact of social or 
demographic developments. For example, the trend towards 
microwaveable ready-cooked meals lowers electricity demand 
for electric stoves, implying a reduction of midday peak load 
by about 6 %.

Finally, deriving load curves with a high temporal resolution 
provides valuable information for demand side management to 
better facilitate the integration electricity generated by fluctu-
ating renewable energy sources or to manage emerging smart 
grid solutions at the community level.
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