

Not So Clever When They Are Off: Standby Power Use in Smart Lamps (7-107-15)

Erik Page Erik Page & Associates (USA) Eamon Kummert Consultant (USA) Steven Beletich Beletich Associates (Aus) Stuart Jeffcott Jeffcott Associates (EU)

Smart lights – what do we mean?

- A lamp that communicates with some remote device (eg smart phone):
 - Directly (eg via bluetooth)
 - Indirectly (eg via WiFi, Zigbee)
- Allows user control of:
 - Light output (dimming)
 - Colour (tunability)
- Potential additional functionality:
 - Movement/other sensing/...
 - Data upload/download/relay/mesh

Scaling the issue

3

- Smart lamps rapidly growing part of the LED lamp market, which is itself growing rapidly:
 - Estimate smart lamps sales could reach 300 million in 2020
- Efficacy can be expected to rise as LEDs improve.
- Added levels of control may result in:
 - Increased usage (e.g., lamps are used longer because they offer new features such as scheduling, colour changing, etc)
 - decreased usage (e.g., lamps are easier to efficiently dim or turn off)
- "Standby-mode" the picture is clearer—these lamps use power in ways that traditional lamps do not.

Research Objective

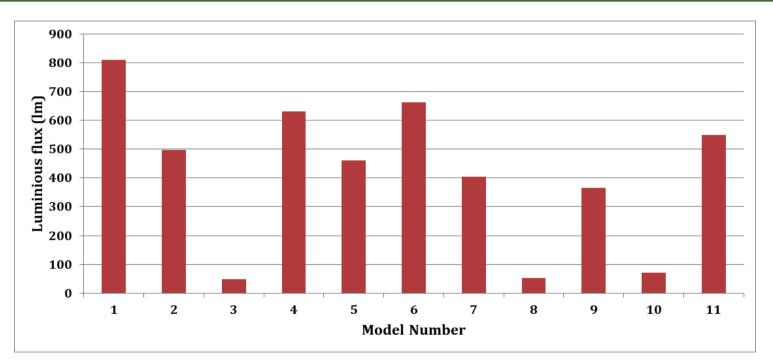
Smart Lamps have potential for enormous energy saving:

- (Almost) Universally LED, hence high/increasing efficacy
- Potential to use "smarts", eg respond to occupancy
- Potential risk:
 - Potential to use considerable energy in "off/standby" mode
- Study Objectives:
 - Investigate potential energy impact of "active" vs "off/standby" mode
 - Identify potential barriers to policy makers managing consumption

Research summary

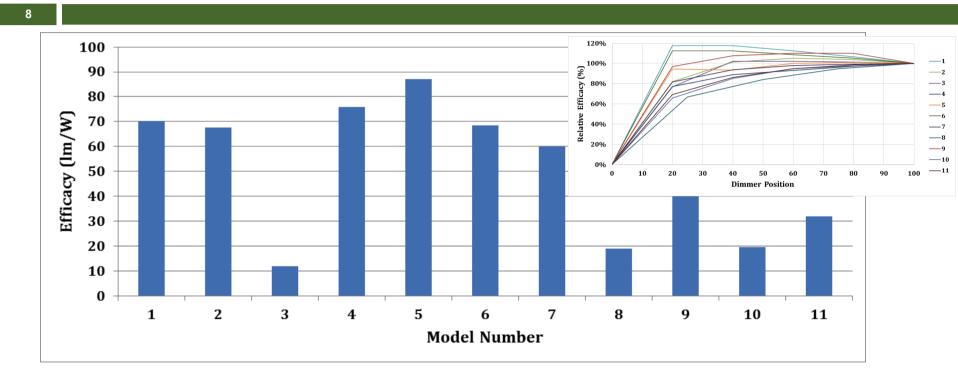
5

- 11 commercial available smart lamp procured (US):
 - 5 required separate wireless bridge/gateway
 - Many with potential for "mesh" connection
- Tested for:
 - Active (light emitting) power and light output
 - CCT adjusted to be between 2700K and 3200K
 - Dimming at 80%, 60%, 40%, and 20% of initial, holding CCT
 - Off/Standby power (plus bridges/gateway)
 - Using DoE "instruction for zero light output"


Issue 1

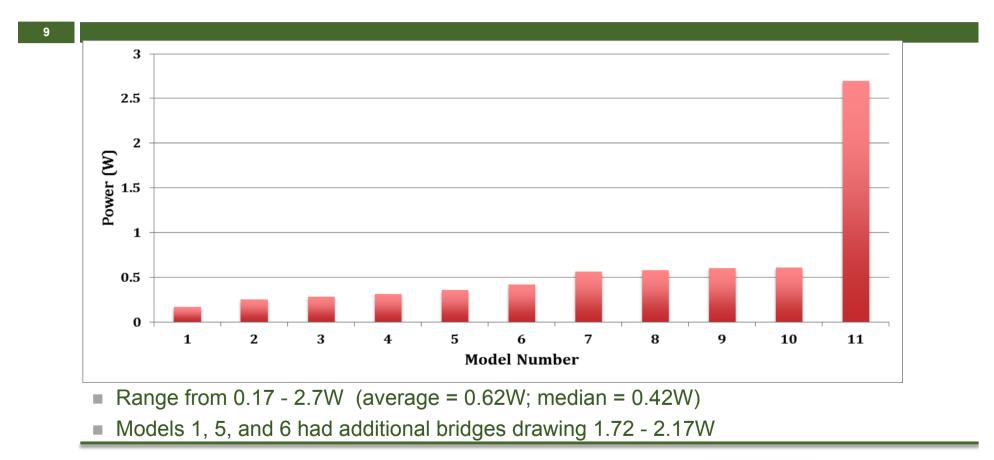
- Test procedures not yet well defined:
 - Both IES LM-79 and IEC 62612 require luminous flux and power when the lamps are not dimmed.
 - Do not address:
 - Dimmed efficiency
 - Large *potential* savings from dimmed smart lamps which by-pass compatibility issues
 - Standby vs Deep sleep; meshing/hub lamps, etc
 - Tunability eg some lamps can be at full output at 2700K or 6500K or saturated colours
 - Performance can vary dramatically based on the colour setting, ie need to define how to adjust colour settings for repeatability

Luminous Flux – Full Power



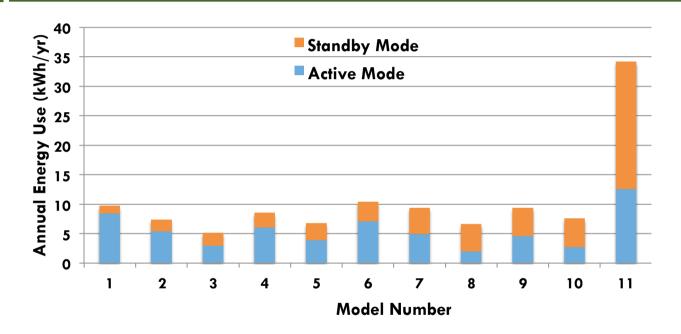
• 3 lamps below 100lm so may not be considered appropriate for general illumination

Efficacy – Full Power/Dimmed

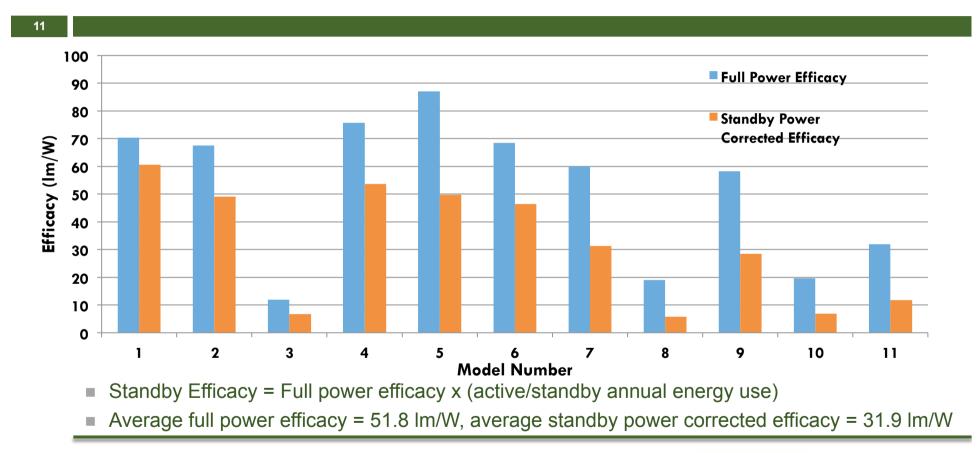


Range from 12.0 - 86.9 lm/W (average = 51.2 lm/W; median = 60.0 lm/W)

Efficacy broadly stable when dimmed down to 40%, slight drop-off thereafter


Standby – Excluding Bridges

Annual Energy Consumption



- Assumes 2 hours/day full light output, 22 hours standby, no bridge power
- Broadly speaking, 100% increase in consumption/significant lost savings

Standby Power Corrected Efficacy

Key Issues

12

- Area policy makers need to address
 - 300 million smart lamps (single year sales) represents nearly 26.5 billion kWhs per year or approximately \$2.65 billion per year in lost savings to standby
 - Based on 0.5W (the average standby power we measured during our testing was 0.62W)
 - Best tested 0.17W already technically possible to reduce "lost savings" by 65%
- Test Procedures need addressing
 - Type of standby, dimmability, tunability

EASY Questions Please

Additional Info

14

- Hard to make any strong statements about Wifi vs Bluetooth for standby
 - This is just how phone is communicating the bridge/gateway (or even a primary lamp) may convert to Zigbee or similar
 - Wifi average 0.7W, Bluetooth average 0.5W,
 - Wifi would be less that Bluetooth if not for one model
- Helpful to have this info to for first pass evaluations
- Hard to make any definitely statements as the reality is a little more nuanced that the simple "WiFi vs Bluetooth" evaluation might imply

Model and Consumption Details

Lamp + Model # Lamp only Router **Router** 0.17 1.72 1.89 wifi 1 0.25 0.25 bluetooth 2 3 0.28 0.28 wifi 0.31 0.31 wifi 4 0.36 1.77 2.11 5 wifi 0.42 2.17 wifi 2.58 6 0.56 0.56 bluetooth 7 0.58 0.58 bluetooth 8 9 0.60 0.60 bluetooth 10 0.61 0.61 bluetooth 11 2.70 2.70 wifi

16

- The type of connection listed below (wifi/bluetooth) is just how your phone is communicating. The "router" (we called it a "bridge") is converting the WiFi to Zigbee or 6LoWPAN (similar to Zigbee).
- The bridge, or even the "primary" lamp (e.g. in the case of LIFX) will generate a Zigbee/6LoWPAN network. So the way the phone is communicating (wifi/bluetooth) is not relevant to lamp power consumption.

