Cold wash – The cool and modern way to launder

Barbara Josephy Eric Bush Sophie Attali Francisco R. Zuloaga

Topten International Services TIS

eceee 2015 Summer Study on energy efficiency 1– 6 June 2015 Presqu' île de Giens, Toulon/Hyères, France

Introduction

- Testing methodology
- Test results
- Summary and recommendations

- Washing of clothes/textiles is part of our lives
- Main share of electricity consumption: heating up cold tap water to up to 90-95°C
- Cold wash saves 60% electricity as compared to 40°C

Cold wash saves (lots of) electricity

- Saving potential of cold wash in EU-27
 - up to 11 TWh/year
 - 2,200 million € per year
 - annual production of the nuclear power plant Emsland (DE)
 - → We should re-think our everyday routine

Assumptions

•EU-27-stock washing machines: around 180 million units (2013, «Omnibus» Review Study 2014)
•Total electricity consumption: 19 TWh / year («Omnibus» Review Study 2014)
•Electricity tariff: 0.20 € / kWh
•Nuclear power plant Emsland (Germany): 11.5 TWh 2013 (Wikipedia)

Barriers are psychological rather than technical

- EEDAL-Paper 2013: Cold Wash – Do Prejudices Impede High Energy Savings? (Josephy et al.)
 - 20°C-cycle is required by Ecodesign Regulation 1015/2010.
 - Detergent designed for cold wash are also available.
 - Prejudice, tradition and custom stop consumers from cold-washing

Facts could help overcome psychological barriers

- Discussions on cold wash especially on washing performance – run controversial and emotional.
- Tests in Dec'14 to contribute scientific facts to the debate:
 - Topten.eu
 - VDE Testing and Certification Institute (Germany)
 - Consumer Organisation Stiftung Warentest (Germany)
 - on behalf of **EKZ** (electrical utility in CH)

- Introduction
- Testing methodology
- Test results
- Summary and recommendations

We compared washing at 40°C vs 20°C

- We measured:
 - Washing performance
 - Energy consumption
 - Programme duration
- Factors influencing the washing performance:
 - Detergent (good/medium/sufficient)
 - Pre-treatment of stains (yes/no)
 - Washing machine (good/medium/sufficient)
 - Loading (half/full)

5 variables, 24 combinations, 18 test arrangements.

Fix parameters	Varying Parameters	Temperature
No soil remover Good machine Half-load	Good detergent	20°C
		40°C
	Medium detergent	20°C
		40°C
	Sufficient detergent	20°C
		40°C
Good detergent Good machine Half-load	Soil remover	20°C
		40°C
	No soil remover	20°C
		40°C
Sufficient detergent Sufficient machine Half-load	Soil remover	20°C
		40°C
	No soil remover	20°C
		40°C
Medium detergent Half-load	Good machine	20°C
		40°C
	Medium machine	20°C
		40°C
	Sufficient machine	20°C
		40°C
Good machine Medium detergent No soil remover	Half-load	20°C
		40°C
	Full-load	20°C
		40°C

Test conditions followed the EN 60456

- Test laundry
- Number of laundry pieces
- Test cycles
- Standardised soiling
- Water hardness

Test conditions followed the EN 60456

We monitored electricity consumption and programme duration of washing cycles.

European Commission

We calculated the Washing Efficiency Index of each washing cycle

After washing / drying:

- Measurements of reflectance of soilings: C₁, C₂, C₅
- $C_{\text{test}} = C_1 + C_2 \dots + C_5$
- Washing Efficiency Index = I test = C test / C ref, 60°C

Example	
C test	320.40
(C _{ref, 60°C})	330.37
Washing Efficiency Index (C _{test} / C _{ref, 60°C})	0.970

- Introduction
- Testing methodology
- Test results
- Summary and recommendations

60% less electricity use at 20°C than at 40°C

Washing performance 10% lower on average at 20°C

Good washing performance at 20°C is possible

Washing performance increases with quality detergents

Washing performance increases with pre-treatment of stains

Washing performance increases with quality machines

Washing performance increases when half-loading

Impact of cold wash on washing performance is lower than that of other factors

Washing performance is affected by programme duration

- Introduction
- Testing methodology
- Test results
- Summary and recommendations

Summary

- Cold wash (20°C) saves 60% electricity compared to 40°C.
- Temperature just one factor affecting washing performance.
- Good washing performance is reached at 20°C with good machines and detergents.
- Cold wash might be appropriate for most everyday situations. We encourage you to try!

Recommendations

- EU policy-makers
 - Include requirements on the washing efficiency at 20°C in the revision of EU Ecodesign Regulation 1015/2010.
- Washing machine & detergent manufacturers
 - Optimization of machines and detergents for 15°/20°C.
 - Use 'cold wash compatibility' as a selling argument.
- Environmental/consumer organisations, energy agencies
 - Continue consumer information/education campaigns on cold wash.
- Academia, research institutes, testing laboratories.
 - Tests and publication of studies (consumer and technical) on cold wash.

Topten flyer «Washing at 20°C is Cool»

- Illustrates how to best wash at 20°C
- Download: <u>http://www.topten.eu/</u> <u>uploads/File/Professional/</u> <u>Other%20Pro</u> <u>%20Guidelines/</u> Flyer Coldwash 2014.pdf

Thank you for your attention

Barbara Josephy
Eric Bush
Sophie Attali
Francisco R. Zuloaga

barbara.josephy@topten.eu eric.bush@topten.eu sophie.attali@topten.eu francisco.zuloaga@topten.eu

This presentation reflectsonly the author's view. EASME and the European Climate Foundation are not responsible for any use that may be made of the information it contains.

European Commission otolia.com

Test arrangement

- Programmes
 - 40°C: «standard programme» as used for the EU Energy label
 - 20°C: programme as required by the Ecodesign Regulation since end 2013 (not for wool etc.)
- Testing at half-load
 - 40°C-standard programme for the EU Energy label is tested at half-load

→ For comparability: also at 20°C was tested at half-load (exception: tests full-load versus half-load)

 Half-load better reflects real consumer behaviour: the average washing load in European households is assumed to be between 3 kg and 4 kg

Measurements of reflectance

After washing / drying

European

Commission

- Reflectance of each of the five soiling was measured and average was derived after the completion of a test cycle
- The 5 average-values then were summed up to the test strip's total reflectance (in %)

	Standard Soiling	Reflectance (%)
	1. Sebum / pigment	74.55
	2. Mineral oil / black carbon	47.89
	3. Blood	86.04
	4. Chocolate / milk	75.15
	5. Red wine	82.60
	Sum Reflectance (%)	366.23
		European

Dten.eu

Climate Foundation

Washing Efficiency Index

- Reflectance sum itself does not have an explanatory power on the washing performance
- Relevant for conclusions: Washing Efficiency Index
 - Ratio between the reflectance sum of the test (C test) and the reflectance sum of reference machine (C ref)
 - Reference machine: 60°C as also applied by Ecodesign Reg.

Reflectance sum (%) test (C test)	366.23
Reflectance sum (%) reference machine (C ref, 60°C (acc. Reg. 1015/2010))	330.37
Washing Efficiency Index (C test / C ref, 60°C)	1.109

• All test results were referenced (40; 40 $_{\frac{1}{2}}$; 20; 20 $_{\frac{1}{2}}$)

Washing Efficiency Index

- Reference for clean: WEI > 1.03
- > 1.03 = MEPS of Ecodesign Reg. 1015/2010

$$I_{W} = \frac{(3 \times I_{W,60} + 2 \times I_{W,601/2} + 2 \times I_{W,401/2})}{7}$$

 How good is this reference value > 1.03 reached at 40°C and at 20°C?

Washing results 20°C can be better than 40°C

Cold wash is appropriate for normally soiled laundry

- To be kept in mind: tests were carried out with heavily soiled test-laundry.
- However, our everyday clothing are only worn for a few hours or one day and usually are free of stains. They are normally soiled. This type of laundry is the usual case.
- It can be concluded that cold wash is absolutely appropriate for normally soiled laundry.

Sinner Circle

Four factors influence the washing final result

www.atescoindustrialhygiene.com

Choice of factors

Detergent3 productsgood & sufficient: test 11/2014 medium: IEC A*

Pre-treatment of stains

1 product (experts recommendation)

Washing machine

3 models good, medium, sufficient: test 11/2014 reg. washing performance (all A+++, 8 kg)

Loading

