

Copernicus Institute of Sustainable Development

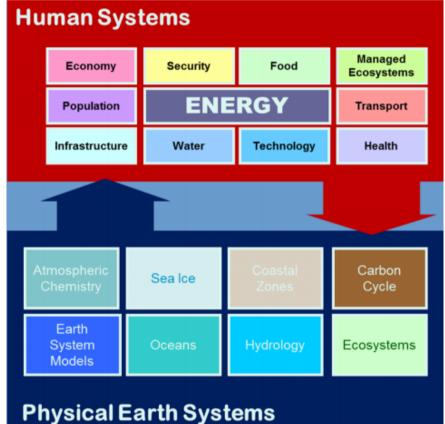
Modeling the cement industry in Integrated Assessment Models - Key factors for further improvement

Panel 2: Sustainable Production September 13th 2016 – Industrial Efficiency Conference, Berlin

Katerina Kermeli, Wina Crijns-Graus, Ernst Worrell

Integrated Assesment Models (IAMs)

Integration of science and knowledge behind different systems:


- Interaction of human system and physical earth system
- Linkages across different sectors

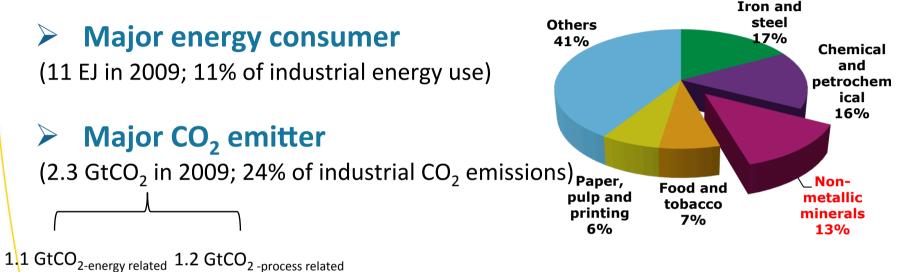
Widely used (e.g. IPCC, GEA) to:

Evaluate climate policies analyze emission reduction strategies and associated investment costs

One of the main criticisms:

Limited representation of the energy demand side!

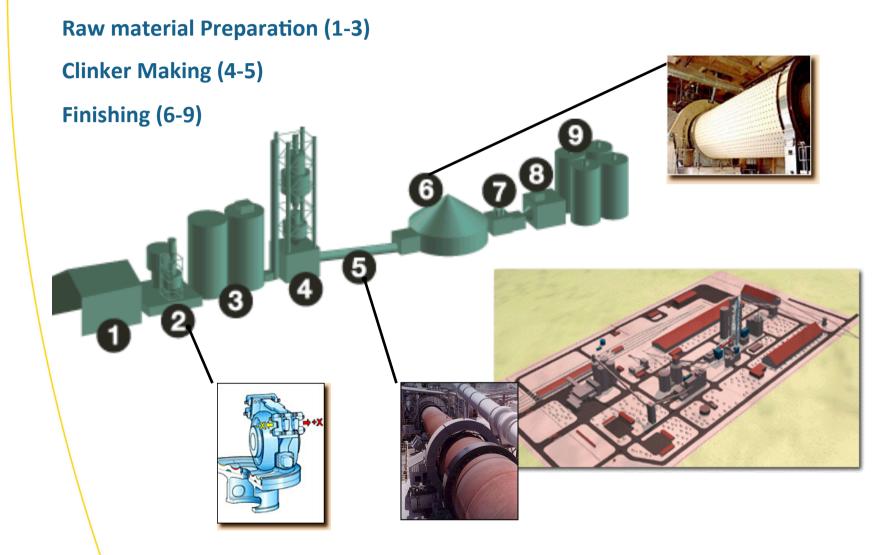
Source: Calvin, O'Neill and Sue Wing, DOE Climate-Energy Workshop October 24, 2014



The industrial representation in IAMs is limited

	TIAM-UCL	Image	Imaclim-R version 1.0	AIM-CGE	REMIND 1.5	GCAM	POLES	GEM-E3	DNE21+	WITCH
Total Industry	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Iron and steel	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	
Non-metallic minerals	✓			\checkmark		\checkmark	\checkmark			
Cement		\checkmark							\checkmark	
Others										
Pulp and paper	✓			\checkmark				\checkmark	\checkmark	
Chemical & petrochemicals							\checkmark	\checkmark		
Chemicals	\checkmark			\checkmark						
Fertilizers						\checkmark				
Ammonia									\checkmark	
Other fertilizers										
Chlorine and sodium hydr.										
Other chemicals										
Petrochemicals										
Ethylene									\checkmark	
Propylene									\checkmark	
Other petrochemicals										
Non-ferrous metals	✓							\checkmark		
Aluminium									\checkmark	
Other non-ferrous metals										

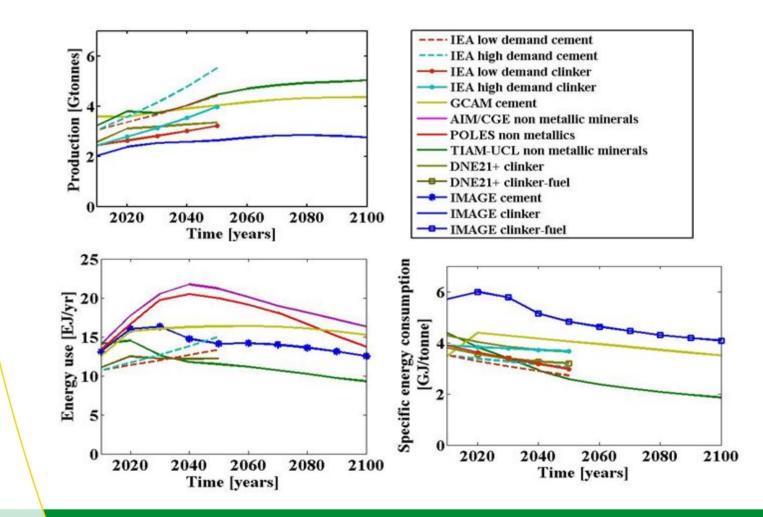
The Cement Industry


2-energy related = 2 = 0 = 0 = 2 -process related

Not too complex industrial sub-sector

- > 3 main processes (raw material grinding, clinker production and finish grinding)
- > Limited trade (4.5% of global cement production)
- One main consumer: construction sector

Cement Making



Cement modeling in IAMs

	Demand	Technology/Energy use				
Model	Demand drivers	Production technologies	Retrofitting options	Material efficiency		
AIM-CGE (non-metallics)	CES production functions	Yes	Yes	No		
DNE 21+ (cement)	i) at low incomes production depends on GDPii) at high incomes depends on population	Yes	Yes	No		
GCAM (non-metallics)	GDP	With or without CCS	No	No		
IMAGE (cement)	Material demand is related to economic activity and material intensity	Yes	No	Yes		
POLES (non-metallics)	Energy demand depends on energy costs and an activity variable	No	No	No		
TIAM-UCL (non-metallics)	GDP and other economic activity for energy or material demand	Yes	Only CCS	No		

IAM cement modeling results (baseline scenario)

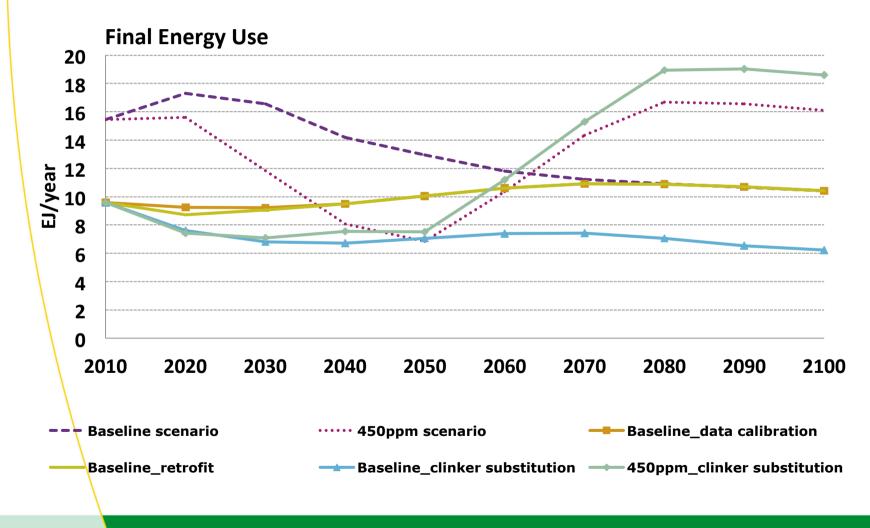
Image model – improvements

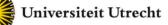
Historical calibration

fuel use, electricity use, clinker to cement ratio

Retrofitting technologies (cost-supply curves)

constructed based on knowledge of regional current technology deployment, typical energy intensities and investment costs


Material efficiency (lower clinker to cement ratio)


Dynamic way of modeling the clinker to cement ratio based on the availability of clinker substitutes:

- o linking Blast Furnace Slag (BFS) availability to the steel industry
- o linking fly ash availability to coal-fired power plants

Image model – updated results

Conclusions

Key areas to improve in the modeling of the cement industry in IAMs:

Industry specific characteristics

(energy efficient technologies/measures; regional implementation rates; key measures such as a lower clinker to cement ratio)

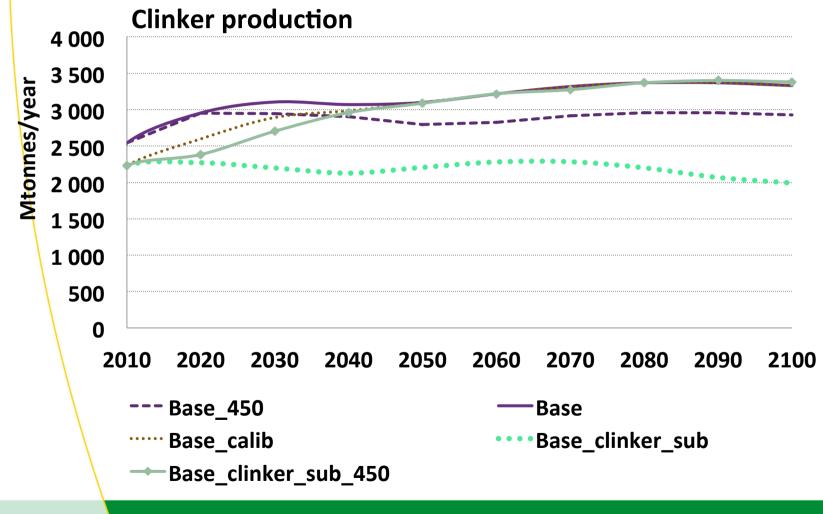
Assumptions and data used in the baseline

i.e. in this analysis:

Outdated data calibration resulted in overestimation of energy use

• Link sectors that can affect each other

i.e. in this analysis:


Developments in the steel industry and the power generation sector can affect the cement industry

Questions?

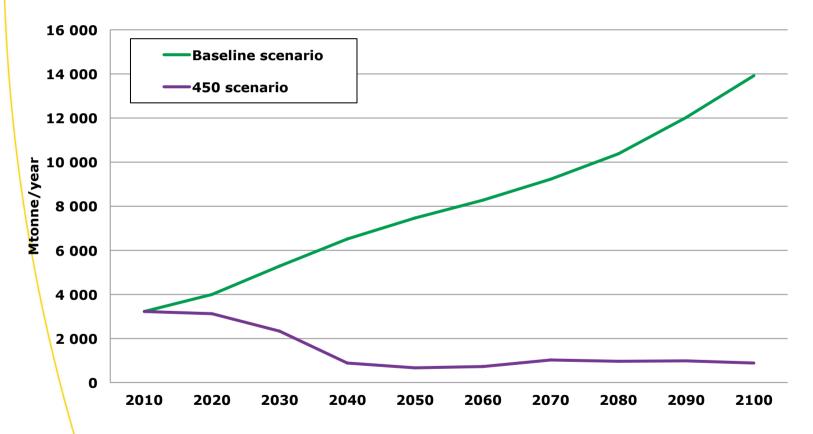


Image model – updated results

Universiteit Utrecht

Coal consumption in coal-fired power plants - IMAGE

