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Abstract
Nowadays, manufacturing plants usually compute production 
plans using a “no stock” strategy. This is efficient regarding 
storage and, to some extent, delivery tardiness costs, but not at 
all regarding energetic costs. Moreover, with the trend of en-
ergy consumption regulation laws and the emergence of the 
demand-response electricity market, plant managers have to 
imagine new ways to regulate their energy consumption. For 
that purpose, some sensors and a data acquisition system must 
be put in place.

Measuring energy data allows 1) the introduction of new Key 
Performance Indicators (KPIs) related to energy consumption 
while evaluating the performance of a plant, 2) to find out ma-
chines that consume more than the others and change produc-
tion plans to respect limits or to minimize costs. In addition, 
production data can also be obtained from existing systems 
(like SCADA). Having energy and production data together 
bring the possibility to compute energy models of production 
activities and use them to build energy-aware production plans 
automatically. This way, the “no stock” or “just in time” strategy 
can be challenged by an energy-aware strategy.

During the past two years, we built such an energy data 
acquisition system in a Schneider Electric factory. It is non-
intrusive, built from self-powered wireless sensors, and hence 
very easy to install. The combination of production data and 
energy data gathered in the same dashboard proved efficient 
and useful to understand energy consumption profiles. Indeed, 
we found out the baseline energy consumption of the plant and 

succeeded to underline days when consumption is abnormal. 
It opens a promising avenue to enrich the software suites for 
production management systems.

We also began to build automatically energy-aware produc-
tion plans, based on energy models of production activities, to 
assist a plant manager. On benchmark data, energy savings of 
up to 15 % are sometimes achievable (depending on the plant’s 
operating conditions and electricity tariffs) with no impact on 
tardiness costs.

Introduction
The work we are presenting in this paper has been carried out 
in the context of the Arrowhead European funded project. The 
study has been conducted based on a real life production line 
of a plant that manufactures electrical cabinets. The process is 
quite straightforward, the line in made of two parts, one deal-
ing with the doors of the cabinets, the other one with the body. 
For both parts the decomposition is similar: a first step where 
the iron sheet is shaped by stamping and folding operations, 
a second step where the product parts are welded. Then there 
is a common step for painting the raw steel parts. The ending 
operation is a manual assembly of the door with its body to 
finish up the cabinet (see Figure 1).

The current scheduling strategy is led by a lowest stock possi-
ble and the activity is planned to produce the production order 
portfolio in due time, with the right quality level. No real atten-
tion is paid to the energy cost for the production line. Energy is 
considered as a utility that you consume to achieve quality pro-
duction in due time. There is no reconciliation of the produc-
tion log with the energy consumption over the corresponding 
period. There is very rarely any tracking of the energy cost per 



3-038-16 DESDOUITS ET AL

360 INDUSTRIAL EFFICIENCY 2016

3. ENERGY MANAGEMENT: THE NUTS AND BOLTS

operation or per product reference. This reconciliation is not 
so easy to make, as the information, when existing, is stored in 
different tools, and managed and used by different actors of the 
plant: the production manager seldom is the energy manager 
in a plant of a reasonable size.

With the new energy challenge, the usage of energy has to 
come under scrutiny, on the one hand because of European 
regulation pressure on environment, on the other hand because 
of the increasing cost of energy. The first step and first need is 
to measure and understand energy consumption in a plant. The 
second step is linked with the prediction of an increasing vari-
ability or even volatility of the energy prices, due to the mas-
sive introduction of intermittent sources of energy production 
(mainly wind turbines and photovoltaic panels). This step con-
sists of introducing some flexibility in the production plan to 
cope with the energy price variation.

Here comes the challenge of the “zero stock policy” inherited 
from kanban (Sugimori, et al. 1977), one of the current produc-
tion management strong principles (if not a dogma). In a fac-
tory plant one of the only ways to get some flexibility without 
compromising the delivery date is to introduce some storage 
and to change the inventory policy. By introducing the variable 
price of energy, the time intervals when energy is spent are not 
equivalent. Some time intervals are more attractive than others 
to consume energy. These constraints can be taken into account 
in the scheduling of a production plan.

Some work on energy modelling of a manufacturing plant 
can be found in the literature. For example, (Le, et al. 2013) 
and (Dietmair and Verl 2009) address energy modelling of ma-
chines. (Dietmair and Verl 2009) have built a modelling frame-
work for machine-tool energy consumption, based on state au-
tomation theory. (Le, et al. 2013) use a similar model and give 

an approach to reduce the number of required sensors in pro-
cess tracking by identifying machines operational states, using 
a neural network. Following a different path, (Fysikopoulos, et 
al. 2014) propose a generalized approach to manufacturing en-
ergy efficiency by giving a definition of manufacturing energy 
efficiency at four different levels: Process level, Machine level, 
Production line level and Factory level. Interactions between 
these levels are studied and an example of scheduling is given 
at the production line level. 

In this paper, work conducted in a Schneider Electric plant, 
with about 1M€ annual electricity bill, is introduced. Our goal 
is to understand the energy consumption of the manufacturing 
process and to manage it, in order to optimize the energy bill, as 
well as other Key Performance Indicators of the plant manager. 
It applies to any type of energy whose tariff varies with time 
of use. In the Schneider Electric plant under consideration, it 
concerns only electricity. Data acquisition from this plant is 
presented in the second section “Data acquisition system and 
visualization”.

In practice, we have built a regression model to understand 
the electricity consumption of the plant with respect to the pro-
duction portfolio. This is presented in the third section “Energy 
modelling of activities”. This has proven to be a challenge. In-
deed, this requires that (i) we get precise enough energy con-
sumption data, (ii) we have historical production data recorded 
as precisely and accurately as possible and (iii) we are able to 
reconcile these two information sources into a synchronized 
table. 

The regression model has been used to feed a scheduling op-
timisation tool that produces production plans. The fourth sec-
tion “Energy aware scheduling” describes how we use the tool 
to evaluate the potential savings on the energy bill.

Figure 1. Manufacturing line description.
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Data acquisition system and visualization
The energy data acquisition system (hardware and software 
components involved in the data collection process: sensors, 
data concentrator, transmission to a database) and the associ-
ated dashboards are first discussed. This acquisition system is 
described in Figure 2. Then, examples of production data are 
given.

ENERGY DATA
The focus was made on a selection of consuming machines in 
the production lines. Four machines have been selected; two 
per production lines: the door stamping, the door welding, the 
body stamping and the body welding. Those machines have 
been selected because their electricity consumption is signifi-
cant enough and the assumption was made that the consump-
tion profile would vary according to the type of items produced. 
The goal was to get an accurate enough consumption profile of 
a set of machines. 

The system is built from a set of off-the-shelf components 
and bespoke components:

• The energy sensors: 2 prototypes of self-powered energy 
sensors have been used to monitor the machine electric-
ity consumption: one type for mono-phased machines (E3 
family Energy Estimator from Schneider Electric Innova-
tion team) and one for three-phased machine (E4 family) 
ones. Both sensor types send the measured data through 
radio ZigBee Green Power (ZGP) protocol. The value sent 
is the cumulated value of energy measured since the be-
ginning of their life; potential overflow is easily managed 
downstream. The information is not sent on a regular time 
basis, but on a regular quantum of energy.

• The Sologate gateway: this gateway has been used to take 
the advantage of both its support of the ZigBee protocol 
to receive sensors’ data and its ability to expose the data 

through modbus protocol. The Sologate is capable of up-
dating the energy values roughly every 100 ms. 

• The LINC gateway: the role of this gateway is to be able to 
sample the energy value with a 1-second sampling rate. To 
achieve this, the LINC middleware provided by CEA (Lou-
vel and Pacull 2014) has been deployed on a Raspberry Pi 
platform. It has been specialized in order to collect data and 
manage the Energy Operation database format. It queries 
the Sologate gateway through Modbus protocol and builds 
an aggregation of those data into a single file that contains 
time series made of the time stamped changes of energy 
value. Consequently, the timestamps are not regular, but the 
number of samples is smaller. 

• The Energy Operation database and visualization tool: this 
is a proprietary Schneider-Electric tool offering a data stor-
age capability and a web interface.

Visualisation of Energy dashboards (the Energy Operation tool)
Energy Operation is a SaaS (Software as a Service) tool devel-
oped by Schneider Electric. Its goal is either to store data com-
ing from meters installed in a building (or coming from third 
party services), or to provide a customizable user interface 
accessible from the Internet in order to make the data under-
standable by the user.

It can store data coming from various ecosystems such as 
comfort sensors, energy meters (heating, electricity, water, 
gas) and building management systems. In our case we also 
want to push data coming from the manufacturing execution 
system.

A set of dashboards has been configured in order to show 
data and support analysis. For example, Figure  3 shows the 
global evolution of the consumption of each machine over a 
month period, the total consumption of the four machines per 
day and per machine, the weight of each machine in the total 

Figure 2. Energy Data acquisition system.
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consumption. Energy values are expressed in kWh in all the 
diagrams. We can see that stamping is the most consuming ac-
tivity; almost 70 % of the global electricity consumption for 
the given month. With these dashboards, it is however difficult 
to determine whether the variation of electricity consumption 
from one reference to the other can be exploited to generate 
savings.

PRODUCTION DATA
Production data are extracted from the Manufacturing Execu-
tion Systems (MES) deployed into the plant. The extracted pro-
duction data still need to be formatted and processed in order 
to retrieve the key information. It is to be noticed also that part 
of the production information is the result of a manual keying; 
therefore, the time stamping can suffer from some inaccuracy. 
In particular, start and end times of activities cannot be esti-
mated accurately enough. 

A FIRST MANUAL DATA MINING
Figure 4 shows the evolution of the power consumption of the 
body production line (in Watts), over a two-month period. We 
can see that the baseline power is about 7,500 W for the body 
part of the production lane. A similar visual analysis helped us 
to highlight that the baseline power consumption of the whole 
lane is about 10 kW when machines are idle. Moreover, ma-
chines are never switched off and their energy consumption 
during non-productive periods represents about 3  % of the 
total energy consumption. 

Those observations are used in the following section, in or-
der to check the consistency of the consumption model built. 
They also highlight flexibilities that can be exploited by the 
scheduler to reduce the electricity bill. 

On the other hand, a first analysis showed that no produc-
tion data are available on the Sundays, while the electricity 
consumption measured is higher than the baseload. The plant 

Figure 3. Energy Operation dashboard example.
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manager explained that this is due to Sunday maintenances, not 
logged in the production system. This observation confirmed 
that the energy acquisition system put in place is accurate 
enough to highlight anomalies. 

Energy modelling of activities
From the gathered data, we wish to evaluate and model the en-
ergy consumption of the production activities executed in the 
plant. To enable this evaluation, we developed a procedure in 
two stages. Each of the two stages (further described below) is 
implemented as a web service on a Schneider Electric platform 
“in the cloud”. The first service synchronizes the schedule and 
energy consumption data. The second service uses the result of 
this synchronization to characterize the energy consumption 
for each relevant “activity”. The first service is optional: if the 
user already has synchronized data, the second service can be 
used directly.

The overall procedure shall be appropriate (sufficient) under 
the following theoretical assumptions:

• Sufficient production and energy data are available and 
these data are (globally) clean enough.

• If the energy consumption of the process depends on ex-
ternal factors, we are able to get the associated data and to 
take them into account in the modelling. For example, if 
the energy consumption varies with the external tempera-
ture, we consider that we can take into account the relevant 
weather data.

• If manufacturing activities can overlap in time and consume 
energy measured by the same sensor (e.g., either because 
the same machine works on several activities in pipeline or 
in parallel, or because a unique sensor is used for a group 
of machines), then the energy consumption of each activity 

shall not vary too much during the course of the activity. 
Otherwise, the activity would need to be decomposed in 
energetically homogeneous sub-activities.

Let us note that the second service provides model quality in-
dicators. Bad values of these indicators are often reported when 
one of the above assumptions does not apply. A more complex 
“visual” version of the procedure is currently under study, in 
order to deal with more complex environments, for which the 
automatic procedure is insufficient. 

Services implementation and data analysis were performed 
with RapidMiner  5 (Hofmann and Klinkenberg 2013), al-
though in a version customized by Schneider Electric.

FIRST STAGE: ENERGY AND PRODUCTION DATA SYNCHRONIZATION
The first stage consists of synchronizing the energy consump-
tion data (one time series per sensor) with production data ex-
tracted from the manufacturing execution system (or another 
legacy system) monitoring the plant. The synchronization al-
gorithm first divides the time line according to the energy time 
series and determines the portion of each production activity 
in each time interval. Roughly speaking, the synchronization 
algorithm consists in re-sampling the production data at the 
sampling rate of the energy data.

Moreover, the synchronization algorithm offers the option 
to aggregate or not contiguous time intervals with similar 
production information into a unique time interval. When 
aggregation is done, similar time intervals are replaced by a 
unique time interval, summing both the energy consump-
tion and the production amount data. Such an aggregation 
presents two advantages: first, the resulting table is smaller 
and easier to read; second, minor differences during the ex-
ecution of the same activities are automatically averaged. It 
presents two drawbacks: the time intervals in the resulting 
table have different durations and do not coincide with the 

Figure 4. Power consumption of the body line over time.
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sampling rate of the energy consumption sensor; second, en-
ergy differences during the execution of the same activities 
are no longer visible. 

SECOND STAGE: CONSTRUCTION OF THE ENERGY MODEL OF THE PLANT
The second stage consists in constructing an energy model. 
It relies on multivariate regression analysis to identify a con-
sumption baseline (i.e., power consumed in the plant, even 
when it is idle) and the energy required in order to execute a 
unit of each type of activity in the plant. This can be expressed 
in the following way:

 , 

total_measured_energyi

Where: 

H is the number of time periods considered; 

τi is the duration of the time period i;

total_measured_energyi is the amount of energy measured by 
the energy sensor during time period i;

R is the set of identifiers of product references;

mean_power_of_referencer is the power consumed by pro-
ducing one unit of reference r; this is the coefficient we 
want to compute for reference r; 

batch_sizer,i is the quantity of reference r produced during 
period i;

baseload is the power consumed by the line whatever the 
production;

errori is a term that represents regression model errors.

For both the baseline and each activity, usual statistic quality 
indicators (absolute error, t-statistic, and p-value) are also pro-
vided, enabling to qualify the confidence in the model.

VALIDATION AND APPLICATION
The reader can easily imagine that the result is very sensitive to 
the precision and accuracy of historical data. We have first vali-
dated the algorithm on a set of 34 benchmarks in the ideal case 
(with perfect energy consumption and manufacturing produc-
tion data). Then, we have introduced perturbations of these data 
in order to quantify the algorithm sensitivity. More precisely, 
we considered the following types of perturbations of the data: 

i. a significant energy consumption baseline (i.e., energy con-
sumed when no manufacturing activity is ongoing in the 
plant); 

ii. random fluctuations of the energy consumption and/or ran-
dom errors from the sensors; 

iii. reduced frequency of sensor measurements; 

iv. imprecise manufacturing execution system data (start and 
end times of production activities). 

Roughly, the obtained results show an appropriate robustness 
to perturbations (i) and (ii), provided enough measurements 
are available. Perturbations of type  (iii) are well handled, as 

long as the frequency of sensor measurements remains below 
the characteristic frequency of the manufacturing process. 
Perturbations of type (iv) are the most annoying. Indeed, the 
information available for making the analysis quickly degrades 
with the imprecision of activity start and end times.

For the Schneider Electric plant, we applied the two stages 
on the data of the body production line, with two different 
synchronization strategies:

• First, we kept periods of the same duration τ . We can see a 
part of the results obtained on Figure 5. There is a line per 
kind of reference r , and the “value” column corresponds to 
the mean_power_of_referencer value, in Watts per product 
unit. The three other columns are quality indicators (for 
example, pValue should be as near zero as possible). We ob-
tained a baseload power consumption of 7,299 W for the 
body production line, consistent with the value of 7,500 W 
suggested by the visual analysis (see Figure  2). However, 
coefficients mean_power_of_referencer obtained have a very 
bad confidence level. This can be explained by a significant 
variability of the energy consumption during the produc-
tion of a specific reference.

• The second synchronization strategy aggregates time pe-
riods with similar production, as explained above. The 
baseload obtained is higher (which is obviously wrong), 
but the activities consumptions are more realistic. The high 
baseload is due to imprecision in the production log. In-
deed, when an activity begins several minutes before being 
logged, machines are considered idle while they are actually 
producing a reference and consuming energy. As consecu-
tive non-productive periods are aggregated, this phenom-
enon virtually increases the computed baseload. On the 
other hand, activities consumptions are probably lower 
than the real consumptions (due to the too high baseload), 
but consistent between one another (see Figure 6). Even if 
this result is not perfect, this is much more satisfactory than 
the previous result, as it enables to identify the relative con-
sumption of each activity, and hence the activities to per-
form when the price of electricity is low.

Finally, we built an approximation of the activities energy con-
sumption by keeping the baseload computed with non-aggre-
gated data, and increasing the energy consumption of activities 
(computed with aggregated data), according to the difference 
between the two baseloads. 

We found out that the power consumption of activities of 
the body production line varies between 13 kW and 23 kW, 
with a baseload of 7.3 kW. Due to the great variability of these 
consumptions, an efficient scheduling algorithm should be able 
to achieve savings on the electricity.

Indeed, this estimation of the energy consumption of each 
activity is used during scheduling to consider the cost of 
electricity consumption as one of the optimization criteria to 
minimize. This incites the scheduler to schedule the activi-
ties for which the electricity consumption is high at times at 
which the tariff is low. This way, a trade-off between storage 
costs and energy cost can be done, depending on the electric-
ity tariff.

∀𝑖𝑖  ∈   1,… , H
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Energy aware scheduling
The evolution of electricity tariffs, their variability in time, and 
the emerging possibility to save on energy costs by limiting or 
“shedding” electrical consumption during specific time peri-
ods, lead manufacturing plant managers to investigate whether 
they could schedule production differently to reduce their elec-
tricity bill while delivering their customers on time. Different 
concepts have been proposed on this subject, e.g., (Artigues, 
Lopez and Haït 2009), (Castro, Harjunkoski and Grossmann 
2011), (Haït and Artigues 2011), (Pecero, et al. 2012). When 
no hard constraint applies on energy resources, the underlying 
optimisation problem takes as input: 

i. a set of customer demands, for given quantities of given prod-
ucts, and for given due-dates; 

ii. a set of recipes, describing the different activities required to 
manufacture the different products, their relationships (prec-
edence constraints, possibly with minimal and maximal de-
lays), as well as the resources (machines, energy) they require; 

iii. a set of production orders (instantiating the recipes) aimed 
at satisfying the customer demands, together with informa-
tion on their current status in the factory; 

iv. time-varying parameters such as the electricity tariff to be 
applied over time. 

The objective is to assign resources, start times and end times 
to each activity of each production order, in a manner that 
both satisfies the relevant precedence and resource constraints 
and establishes a compromise between multiple performance 

Figure 5. Sample of the regression results, on non-aggregated data.

Figure 6. Sample of the regression results, on aggregated data.
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objectives. More precisely, the goal is to minimize tardiness 
penalties corresponding to late customer deliveries, energy 
consumption costs, other manufacturing costs (e.g., when dif-
ferent machines are able to perform the same activity without 
requiring the same amount of manpower), and storage costs.

This problem is a generalization of classical scheduling 
problems and is thus strongly NP-Hard. Nevertheless, several 
techniques can be used to find good solutions to such schedul-
ing problems, e.g., mixed-integer linear programming (MILP), 
constraint programming (CP), meta-heuristics, etc. All have 
their advantages and drawbacks. The current version of our 
scheduler uses CP to generate an initial schedule (CHOCO3), 
which is then improved using our own large neighbourhood 
search based on a MILP model (CPLEX12.6). 

MODELLING
In the context of the study reported here, each activity has a 
unique execution mode requiring a specific machine (of ca-
pacity 1) and a given amount of electrical power throughout 
the execution of the activity. The duration of each activity is 
known. A simple form of energy tariff is also assumed: time 
intervals (buckets) are defined and, for each bucket, a price per 
kWh is provided. 

In this context, the main variables of the problem are the 
start times of production order activities. ST(i, p, j) denotes the 
start time of the jth activity of production order p, instantiating 
recipe i. ET(i, p, j) denotes the end time of the same activity and 
is equal to ST(i, p, j) + pt(i, p, j) where pt(i, p, j) is the known 
duration of the activity. Precedence constraints between two 
activities j1 and j2 of the same recipe translate into inequalities 
of the form ST(i, p, j2) - ET(i, p, j1) ≥ d1,2 where d1,2 is a constant 
positive or negative delay between the activities. Machine shar-
ing constraints, stating that two activities requiring the same 
machine cannot overlap in time, take a disjunctive form [ST(i1, 
p1, j1) - ET(i2, p2, j2) ≥ 0 OR ST(i2, p2, j2) - ET(i1, p1, j1) ≥ 0]. In 
a MILP model, a Boolean variable PRECEDES(i1, p1, j1, i2, p2, 
j2) with value 1 if activity (i1, p1, j1) precedes activity (i2, p2, j2) 
and value 0 otherwise is introduced to replace the disjunction 
by two inequalities (as in (Applegate and Cook 1991)). Stor-
age costs of intermediate products are expressed as a linear 
combination of delays between the end times of the activities 
that produce the intermediate product and the start times of 
the activities that consume it. Tardiness costs are expressed as 
a linear combination of the delays between the due dates of 
the demands and the end times of the activities that produce 
final products for these demands: TCOST(i, p, j, d) = wd * fi,p,j,d 
* max(0, ET(i, p, j) – dtd) where wd is a weight associated to 
demand d, fi,p,j,d is the quantity of final product produced by 
activity (i, p, j) to serve demand d, and dtd is the time at which 
demand d is due. In a MILP model, this equality is replaced by 
two inequalities TCOST(i, p, j, d) ≥ wd * fi,p,j,d * (ET(i, p, j) – dtd) 
and TCOST(i, p, j, d) ≥ 0.

Energy cost is the most difficult to represent as the cost in-
curred for each activity depends in a complex manner on when 
it executes. Following (Erschler, Lopez and Thuriot 1991), the 
overlap between an activity (i, p, j) and a time bucket [stk etk) 
is given as max(0, min(etk – stk, etk – ST(i, p, j), ET(i, p, j) – stk, 
pt(i, p, j))). This temporal overlap OVERLAP(i, p, j, k) can then 
be multiplied by the power required by activity (i, p, j) and the 
price per kWh over time bucket [stk etk) to get the energy cost. 

This looks simple at first glance, but in CP the expression of the 
overlap induces a lot of hidden variables (except if you develop 
a special global constraint, which we have not done yet), and 
in MILP the max(0, min(…)) structure also causes difficulties. 
After various trials, we converged on a model with 2 intermedi-
ate variables, one continuous OMAX(i, p, j, k) and one Boolean 
OBOOL(i, p, j, k), with the following constraints: 

• OMAX(i, p, j, k) ≤ min(etk – stk, etk – ST(i, p, j), ET(i, p, j) – stk, 
pt(i, p, j)), which easily translates into 4 linear inequalities.

• 0 ≤ OVERLAP(i, p, j, k) ≤ (etk – stk) * OBOOL(i, p, j, k)

• Sk OVERLAP(i, p, j, k) = pt(i, p, j)

• OVERLAP(i, p, j, k) ≤ OMAX(i, p, j, k) + bigM * (1  
– OBOOL(i, p, j, k)) where “bigM” is a large constant, e.g., 
the time horizon of the scheduling problem.

Moreover, we are currently working on handling activities pre-
emption and piecewise-linear energy cost functions.

EXPERIMENTAL RESULTS
To assess the quality of various algorithmic combinations, we 
have used 38 benchmark instances from the literature (with 
recommended computing time limits) (Le Pape and Robert 
2007), initially including no energy costs, to which we added 
energy consumption data. The reader is referred to (German, 
Desdouits and Le Pape 2015) for a description of the methods 
we tried and results. Depending on the instance and tariff, we 
observed that between 0 % and 15 % of the electricity bill could 
be saved without affecting tardiness costs. 

In order to compute production schedules for the studied 
plant, we had to feed the above model with real plant data:

• energy consumption of production activities are computed 
using the method described in the previous section;

• processing times of activities are computed from produc-
tion data;

• the electricity tariff is a typical peak/off-peak French tariff;

• due dates of customer demands are extracted from produc-
tion data;

• tardiness costs depend on the production order: the tardi-
ness penalty wd for a customer order is set to 10 times the 
penalty for a stock order.

First results show that production schedules can be computed 
for our manufacturing plant, but for very short time horizon, 
because of the number of activities. The obtained schedules 
seem very close to the ones currently applied into the plant, 
which is encouraging for future work. In the future, our sched-
uler will have to handle at least one-week data to be usable 
in the real plant. Performance improvements, as well as large-
scale experimentations on real data, are currently ongoing.

In the future, the goal is to build a simple decision-aid tool 
that could be tested in the plant. This will be achieved by:

1. computing a small set of nearly optimal production plans 
over a week period;

2. visualize these schedules and highlight the associated tardi-
ness, energy and storage costs; 
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3. sending the result to the plant manager, who could use it to 
decide when to product which reference.

The plant manager would be asked which production plan he 
chooses and why. That would allow us to improve the decision-
aid tool, in an iterative process.

Conclusion
In this paper, a methodology to enable automatic computation 
of optimal production plans is presented, as well as the applica-
tion of this method to a real manufacturing plant. 

In order to compute production plans, we had to know how 
much energy is consumed in producing each kind of reference. 
Thus, we measured energy consumed by each machine, over a 
long time period. Then we synchronized energy measures with 
production log, and used a regression algorithm to compute 
approximated energy consumption of each activity, as well as 
the baseload.

The approach has been validated on clean datasets from 
benchmark files. In addition, we confirmed for the studied 
plant, that energy consumption varies, depending on the kind 
of reference produced. This potentially enables savings on the 
electricity bill, by shedding energy-consuming activities when 
the electricity is cheap. 

However, contrarily to what we expected, we did not find 
out any correlation between the size of the cabinet produced 
and the energy consumption. We will have to perform other 
experiments to understand what the energy consumption re-
ally depends on.

Moreover, a scheduling model of the plant is proposed, that 
still needs to be refined but that already allows us to handle 
small instances (e.g. instances with a few production orders). 
Future work will allow us to quantify possible savings of the 
electricity bill, depending on the electricity cost function. In-
deed, when energy consumption is different from reference to 
reference, including energy cost in the optimization cost func-
tion can be particularly profitable. However, we still have to 
handle some disruptions in the data and to evaluate the eco-
nomical interest of our approach for the real plant. The attrac-
tiveness of this approach is linked to the inherent flexibility of 
the process and the variation amplitude of the energy cost for a 
given energy tariff, compared to storage costs.

References
Applegate, David, and William Cook. “A computational study 

of the job-shop scheduling problem.” ORSA Journal on 
computing, 1991: 149–156.

Artigues, Christian, Pierre Lopez, and Alain Haït. “Scheduling 
under energy constraints.” IESM. Montreal, Canada, 2009.

Castro, Pedro M, Iiro Harjunkoski, and Ignacio E Grossmann. 
“Optimal scheduling of continuous plants with energy 




