

J-L Bergerand, P-A Berseneff, C Le Pape, D Yanculovici Schneider Electric

Energy study of a manufacturing plant

September 2016

A manufacturing plant of electrical cabinets

Goal: challenge the inventory policy

¹Y. Sugimori et al. (1977). "Toyota production system and Kanban system Materialization of just-in-time and respect-for-human system". In: International Journal of Production Research 15.6, pp. 553–564

Energy modeling: a state of the Art

• a modelling framework for machine-tool energy consumption

A Dietmair and A Verl (2009). "Energy consumption forecasting and optimisation for tool machines". In: Energy 62, p. 63

• an approach to reduce the number of required sensors in process tracking

Cao Vinh Le et al. (2013). "Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems". In: Transactions of the Institute of Measurement and Control 35.5, pp. 583–592

• a generalized approach to manufacturing energy efficiency at: Process level, Machine level, Production line level and Factory level

Apostolos Fysikopoulos et al. (2014). "On a generalized approach to manufacturing energy efficiency". In: The International Journal of Advanced Manufacturing Technology 73.9-12, pp. 1437–1452

Energy Data acquisition system

Self powered energy sensors

¹Maxime Louvel and François Pacull (2014). "LINC: A Compact Yet Powerful Coordination Environment". In: Coordination Models and Languages: 16th IFIP WG 6.1 International Conference, COORDINATION 2014, Held as Part of the 9th International Federated Conferences on Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings. Ed. by Eva Kühn and Rosario Pugliese. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 83–98

A first manual data mining

Principles of energy modeling

Linear regression of:

- energy_r is the energy consumed by producing one unit of reference r;
- baseload is the power consumed by the line whatever the production;
- error_i is a term that represents regression model errors.

 $\forall t_i \leq H$,

$$\textit{energy}_i = \sum_{r \in \textit{References}} (\textit{energy}_r \times \textit{batchSize}_{r,i})$$

+ baseload $\times \tau_i$ + error_i

		Data acquisition	Energy modeling		Conclusion
Res	Results: an energy model				
	Periods of a	duration $ au$			
	b	aseload	ac	tivities consumption	
		7.3 kW		bad confidence level	
	Time periods with similar production aggregated				
	baseload		ac	tivities consumption	
	v	ery high		variant and realistic	
	Both strategies combined				
	b	aseload	ac	tivities consumption	
		7.3 kW	realistic	: + high baseload - 7.3 I [13kW, 23kW]	<w< td=""></w<>

From energy modeling to production scheduling

First results on benchmarks

Instances

- 34 scheduling problems from academy and industry
- Solved with and without energy taken into account

Tariffs

- **T1** : basic peak/off-peak tariff
- T2 : 30% decrease at night but 7,5% increase at daytime
- T3 : 60% decrease at night but 15% increase at daytime

Conclusion and outlooks

What has been proposed:

- a **methodology** to enable automatic computation of optimal production plans
- the **application** of this method to a real manufacturing plant
- a **scheduling model** of the plant

Outlooks:

- highlight a correlation between the width of the cabinet and the energy consumption
- quantify savings on the electricity bill
- better handle disruptions in data
- **improve scheduling** model to handle big instances

C. Desdouits

J.-L. Bergerand

P.-A. Berseneff

C. Le Pape

D. Yanculovici

Questions?

