A prototype tool for automatically giving energy saving advice based on smart meter data

Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan

> Osamu Kimura Hidenori Komatsu, Ken Nishio, Toshi Mukai

> > **ECEEE Industrial Summer Study 2016**

№ 電力中央研究所

Background

- Accelerated adoption of smart-meters
 - ➤ Growing amount of interval data available for energy efficiency services
- Need to expand energy audits to SMEs
 - > Public audit programs can reach only a fraction of SMEs
 - Traditional audits cost- and time-intensive

What if we could provide energy saving advice to SMEs automatically using smart-meter data?

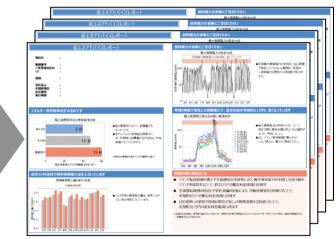
Objective of our tool development

- ◆To provide <u>customised energy saving advice</u> that are generated <u>automatically</u> using (almost sorely) <u>smartmeter data</u>
- ◆Target:
 SMEs, especially in commercial sector
- Users:
 Utilities
 Energy service providers
 Multi-site companies with interval electricity meters

Input and output of our tool

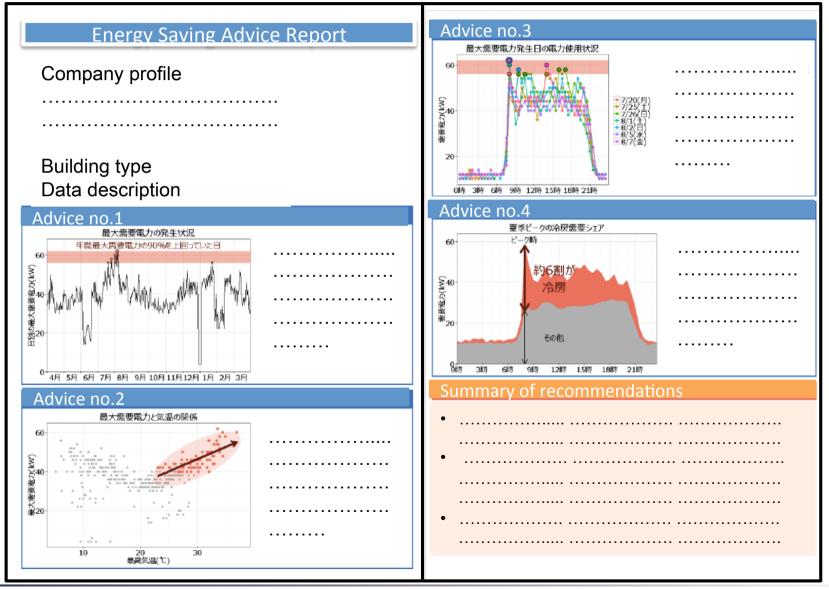
30-minites interval data

	D 1	D 2	D 3	D 4	
2015/4/1 0 00	368	184	258	161	
2015/4/1 0 30	368	161	258	138	
2015/4/1 1 00	368	161	258	184	
2015/4/1 1 30	368	184	129	184	:
2015/4/1 200	368	138	258	161	
2015/4/1 230	345	161	258	161	
2015/4/1 3 00	322	161	129	184	
2015/4/1 3 30	345	161	258	138	
2015/4/1 4 00	345	138	258	161	
2015/4/1 430	345	161	129	161	
2015/4/1 5 00	322	138	258	161	
2015/4/1 5 30	322	184	129	138	

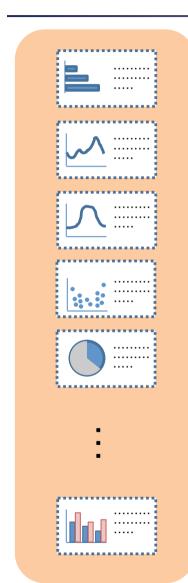

Basic demographic data (* optional)

١.	/					
		Building type	Address			
	ID1					
	ID2					
	ID3	•••				
	ID4	•••				
	ID5					

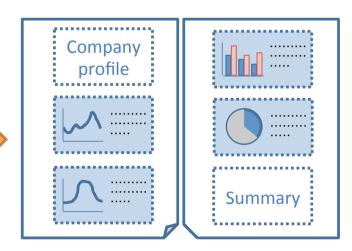
Our report generator


Temperature (data public)

Customised energy saving advice reports

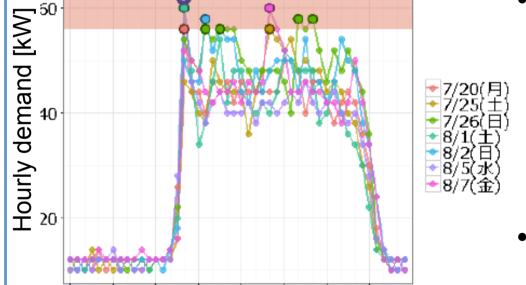


2 pages, A4 paper, by mail, 2 times a year


Design and selection of advice

Approaches for designing advice

- 1. Fault detection
- 2. Disaggregation
- 3. Social comparison (benchmarking)
- 4. Selective visualization


Select the most important 4 advices for each building

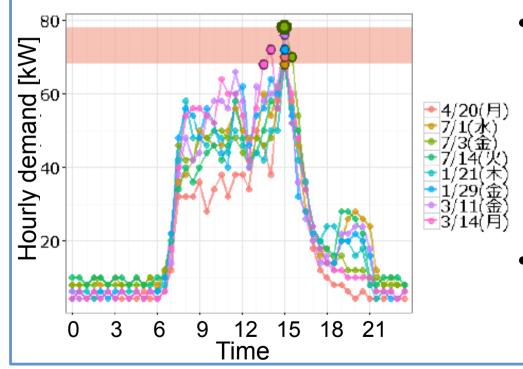
1. Fault detection

Example: detecting unnecessary demand increases.

The maximum demand was increased by 6 % in the highest 5 hours. Hourly demand in days with highest demands in a year • To avoid demand

15

Time

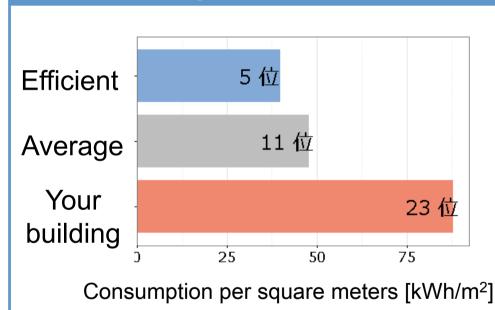

18 21

- To avoid demand peaks, be careful for operation of air-conditioning, when e.g. starting-up, or extremely hot.
- Check if any equipment can be stopped in a peak time.

1. Fault detection (cont.)

The maximum demand was increased by 13 % in the highest 5 hours.

Hourly demand in days with highest demands in a year

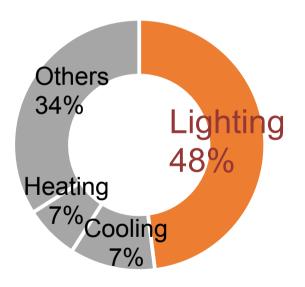


- To avoid demand peaks, be careful for operation of airconditioning, when e.g. starting-up, or extremely hot.
- Check if any equipment can be stopped in a peak time.

2. Social comparison (benchmarking)

Example: benchmarking of yearly kWh per m²

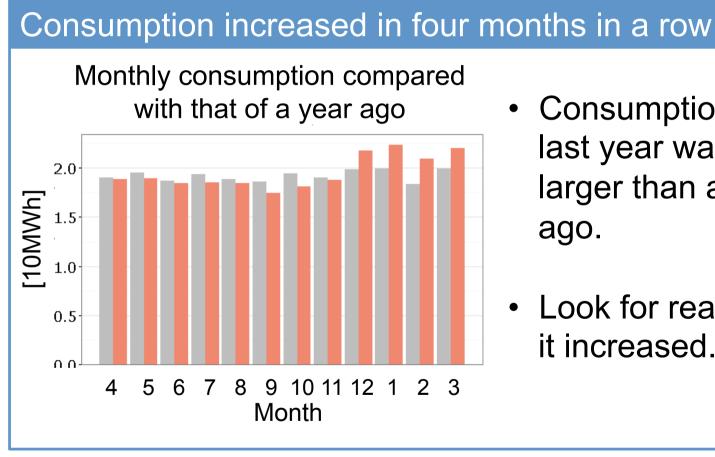
Your building consumed more than similar ones


- Your building consumed more than similar ones last year, and ranked 23rd out of 25.
- If you reduce consumption to the average level, it will save 40% of your total consumption.

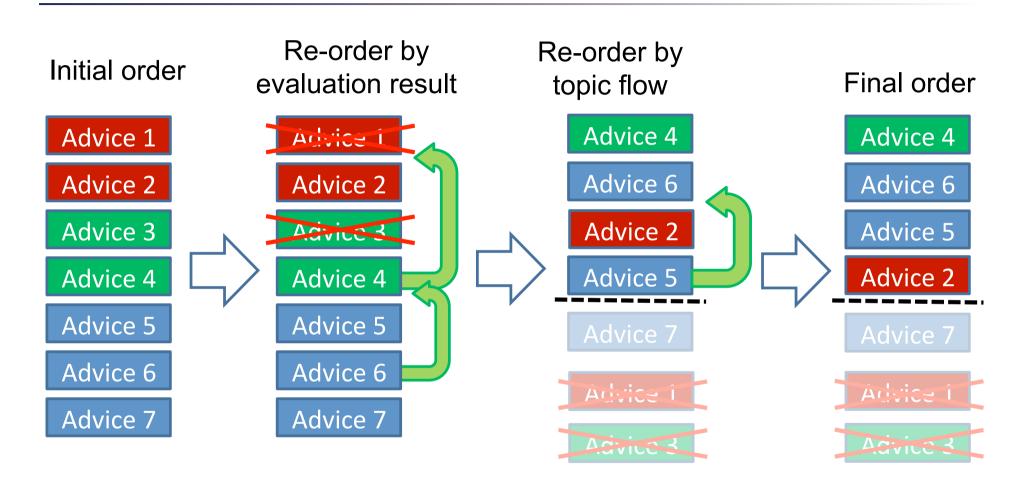
3. Disaggregation by end use

Example: Disaggregation highlighting the lighting demand

Lighting accounted for 59% of total consumption last year.


Share of electricity consumption by end-use

- This can be saved by reducing lamps and switching to LED lighting.
- Measure light levels and you will find areas with excessive lighting.


4. Selective visualization

Example: comparison of monthly consumption with last year

- Consumption of the last year was 5% larger than a year ago.
- Look for reasons why it increased.

Selection of advice

Does it useful? effective in saving energy?

Responses from energy managers (preliminary results)

- "Useful for understanding usage patterns, since we do not have demand monitors."
- "Important material for planning EE measures."
- "Too busy to even take a look at it."
- "We've done those recommendations already."

Discussions

- ◆ Advice from fault detection and disaggregation should be useful, but they are not selected or do not work properly in some occasions.
- ◆ For industrial SMEs?
 - > would be very difficult.
 - > would work for a homogeneous segment, especially with additional data to normalise operation ratio.
- ◆ A "Home energy report" by OPOWER reduces by 2.5% in average, implying our reports would have similar level of impact at most, which is still meaningful if achieved.

End of presentation

Thank you!

Contact:

Osamu Kimura

Central Research Institute of Electric Power Industry o-kimura@criepi.denken.or.jp

Comparing traditional/emerging services and tools using smart-meter data

Data requirement

Traditional audits

Virtual Energy Audits by FirstFuel etc.

OUR TOOL

Business Energy Report by OPOWER etc.

EMS/Demand monitors
Enhanced billing

Complexity of analysis