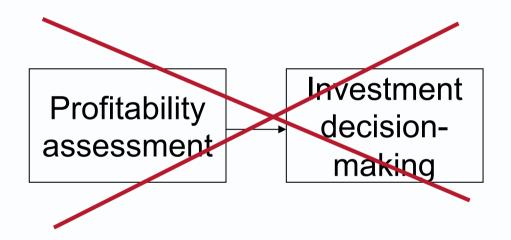


Catherine Cooremans, University of Neuchatel Rita Werle, Impact Energy, Zürich

M_KEY – MANAGEMENT AS A KEY DRIVER OF ENERGY PERFORMANCE

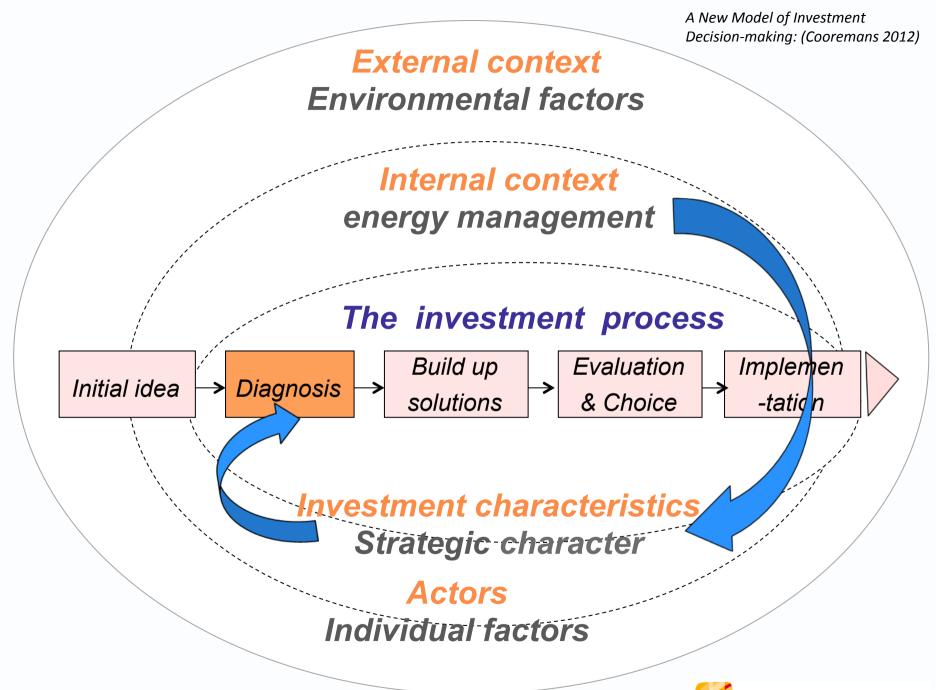
ECEEE, Industrial Summer Study Berlin, September 2016

Managing energy consumption National Research Programme NRP 71



- 1. Conceptual framework
- 2. Empirical research
- 3. Preliminary results
- 4. Discussion
- 5. Conclusion

Conceptual framework: Investment decision-making


According to mainstream, investment decisionmaking is driven by profitability assessment analysis. Profitability is key.

Conclusion : not observed in real life

INFRAS - University of Neuchâtel - Impact EnergyCatherine Cooremans - eceee summer study - Sept. 12th, 2016

INFRAS - University of Neuchâtel - Impact EnergyCatherine Cooremans - eceee summer study - Sept. 12th, 2016

Managi Nationa

Definitions

Energy Management System - EnMS

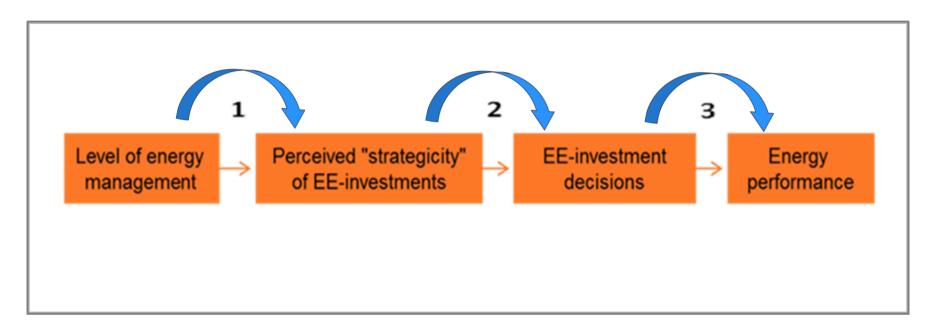
Set of interrelated or interacting elements to establish an energy policy and energy objectives, and processes and procedures to achieve those objectives

(ISO50001 – Art. 3.9 – Terms and definitions)

• An investment is strategic

if it contributes to create, maintain or develop a sustainable competitive advantage

(Cooremans, 2011)



M_Key empirical research

INFRAS - University of Neuchâtel - Impact EnergyCatherine Cooremans – eceee summer study – Sept. 12th, 2016

M_Key research model:

- 3 relationships of influence
- 4 research questions
- 8 hypotheses

Methodology

Survey:

- Population: approx. 10.000 Swiss large-scale energy consumers (for profit) i.e. sites or establishments consuming more than 0.5 GWh/year of electrical energy and/or 5 GWh/year of thermal energy.
 - about 35% of the total Swiss electricity consumption.
 All types of businesses Secondary & tertiary sectors.
- Sample: 2'040 contacted (11 cantons) 201 answers
- Strict anonymity help of cantonal energy offices + federal agencies
- Interviews: 30
- Case studies: 5

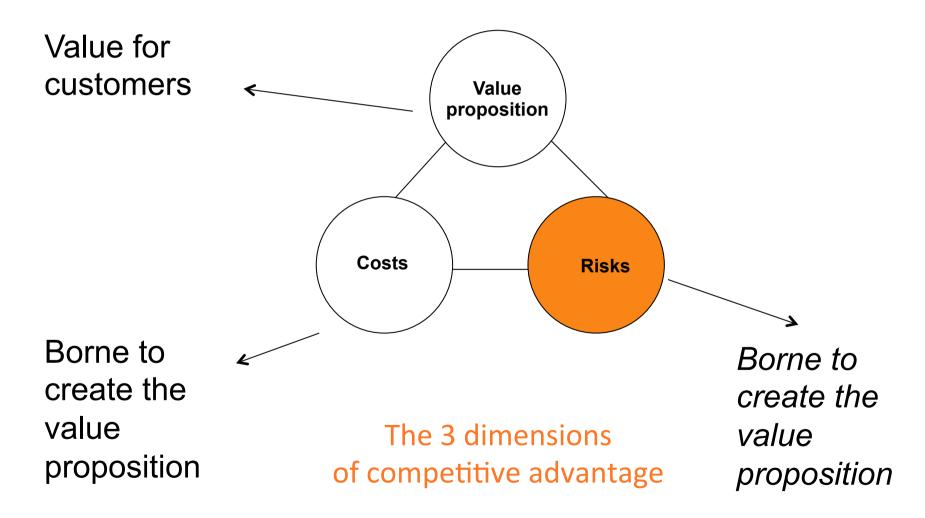
M_Key Preliminary results

Energy management level

Energy Management Level	Score	Scale	
Energy intensity			
Which percentage do your energy consumption			
total costs represent in :			
- Percentage of your general expenses (%)		2 pts if at least	
- Percentage of your turnover (%)	2	1 answer	
Did your company make a commitment of a	2	2/22 0]
continuous reduction of its energy consumption	2	yes = 2 / no = 0	
Did your company undertake any of the following]
tasks in relation with energy use :			
 Evaluation of energy performance 	1	$y_{00} = 1/m_0 = 0$	
(benchmarking)	1	yes = 1 / no = 0	
- Definition of baseline	1	yes = 1 / no = 0	
- Definition of key performance indicators	2	yes = 2 / no = 0	
- Definition of energy policy	1	yes = 1 / no = 0	
- Setting of measurable goals regarding energy	1		
consumption reduction	1	yes = 1 / no = 0	
- Definition and setting of measures to reach the		1/100	
goals defined	1	yes = 1 / no = 0	
- Data collection regarding goals achievement	1	yes = 1 / no = 0	
Which ressources have been allocated to energy-]
efficiency measures implementation :			
- Human resources (i.e. project team)	1	yes = 1 / no = 0	
- Technical resources (i.e. meters)	1	yes = 1 / no = 0	
- Electronic resources (i.e. software)	1	yes = 1 / no = 0	
Energy manager :			
- Does the company have an energy manager	2	yes = 2 / no = 0	
- Does the energy manager perform other	0	yes = -1 / no = 0	
functions in your company	0	yes = -17 110 = 0	
- If yes, which one			
Does your company establish an internal	1	yes = 1 / no = 0	
communication on energy issues	1	yes = 17 110 = 0	
Did your company organize the following systems			
and procedures in relation with its energy policy:			
- Training system for staff	1	yes = 1 / no = 0	
- Reward system	1	yes = 1 / no = 0	
- Monitoring system of the results in goals reaching	1	yes = 1 / no = 0	
- Revising goals procedure	1	yes = 1 / no = 0	1
TOTAL	22	Maximum score	; energy c
		= 22 pts	Research F

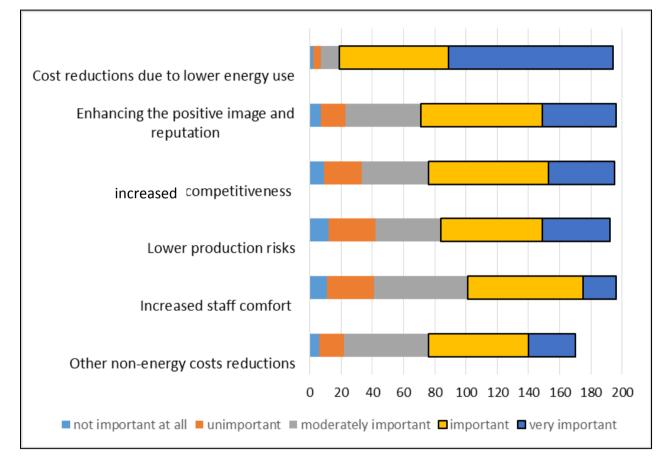
Energy management level

- Average score is 10,7 points out of a maximum of 23 points.
- No significant differences between industrial sector (128 firms, including construction) and services sector (73 firms), in terms of average score.
- 50% of the 201 respondent firms have designated an energy manager but all of them (but 10) manage energy issues on a part time basis only.
- Results = similar to those of Cooremans' survey 2006-2007 (Cooremans, 2012)


Energy intensity

- Average electricity intensity*: 2,9% (147 answers).
- Average energy intensity*: 4% (110 answers).
- Higher electricity intensity in service sector (3,8% - 45 observations), than in industrial sector (2,5%).

(*Electricity or energy costs as a percentage of turnover).

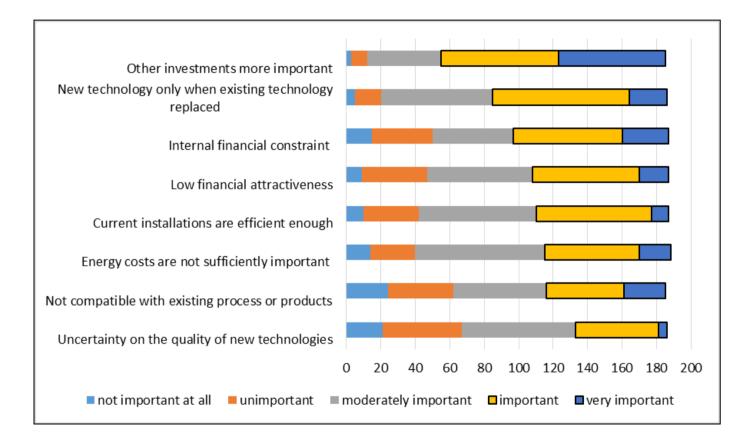


Investment "strategicity"

Important or very important drivers of energy-efficiency investment

- Energy-cost reductions: 90%
- Non-energy cost reductions: 55%

"Strategicity" of energy-efficiency investment

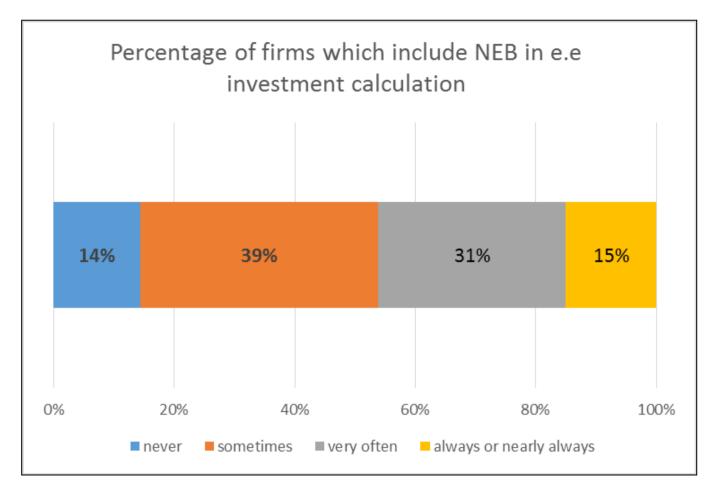

- Increased competitiveness = a driver for 61%
- Energy cost reduction = the 1st driver of energy-efficiency investment decision-making (175 out of 194 firms consider cost savings as an "important or very important" driver).

BUT:

 Investment subsidies = a driver only for 42.5% and tax breaks only for 39%.

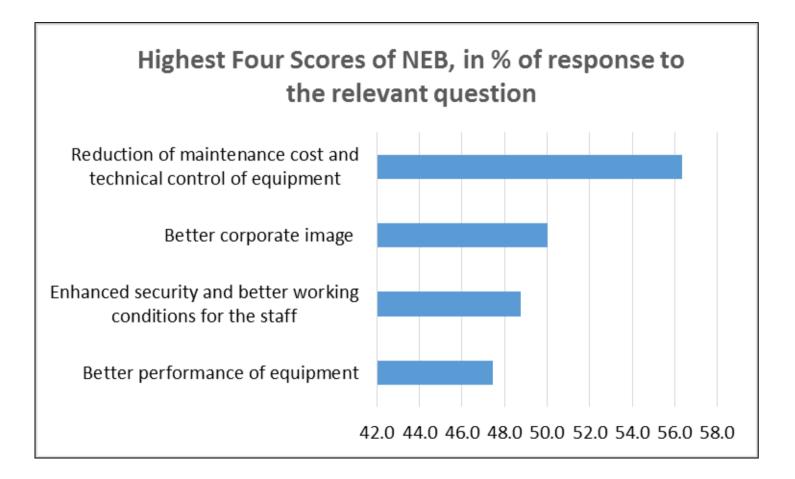
Important or very important barriers to energy-efficiency investment

- Other investment more important: 70%
- Financial constraints internal: 48% external: 18.5%
- Low financial attractiveness: 42%
- Energy costs not important enough: 39%


Financial practices

	yes	no	total
Simple payback (payback period)	144	20	164
Net present value NPV	25	99	124
Internal rate of return (IRR)	34	94	128

20-25% companies only apply NPV and/or IRR to assess energy-efficiency investments, which is different from their financial practices regarding "general investment" evaluation.


Non-energy benefits

53% of companies rarely or never include NEBs in their investment calculations

Non-energy benefits

Discussion

INFRAS - University of Neuchâtel - Impact EnergyCatherine Cooremans – eceee summer study – Sept. 12th, 2016

Discussion I

- Energy cost reduction is described as the first driver of ee investments (as usual) but energy costs are not high enough to be a powerful driver, and resources (capex) are allocated to *more important* investments.
- Subsidies and tax rebates are not perceived as important: why?
- Restrictive financial methods and criteria (PB) probably illustrate the low strategic character of ee investments and a lack of financial competences of engineers in charge of framing investment projects.
- Non-energy cost reduction is generally not taken into account in financial calculations.

Discussion II

- EE investments' contribution to core business and competitiveness perceived as drivers moderately important or important for 45-60% of companies.
 But NEBS (which significantly raise ee investment contribution to value-costs-risks competitiveness) are rarely or not taken into account in investment asessment (qualitative / quantitative) by 53%.
- Energy management level is very moderately correlated with strategicity level and investment level.
- 35-40% of the respondents see no impact on competitiveness or profitability of ee investments.
 30% are not able to evaluate the impact.

Conclusions

INFRAS - University of Neuchâtel - Impact EnergyCatherine Cooremans – eceee summer study – Sept. 12th, 2016

- Huge diversity between companies.
- Relationship of influence not observed yet and few hypotheses confirmed.
- However results enable comparison with previous studies and give the first extensive picture of Swiss large-scale energy consumers and of their ee investment practices.
- More answers to the questionnaire are needed (2nd wave of sending now).
- More analysis is needed.

Thank you!

catherine.cooremans@unine.ch

