

Energy Technologies Area Lawrence Berkeley National Laboratory

China's Trajectories beyond Efficiency:

CO₂ Implications of Maximizing Electrification and Renewable Resources through 2050

Nan Zhou

Co-authors: Nina Khanna, David Fridley, Nihan Karali, Jingjing Zhang and Wei Feng China Energy Group Lawrence Berkeley National Laboratory

2017 ECEEE Summer Study

China's energy system is coal-based

China Final Energy Consumption (2014): 3139 Mtce

Thermal installed capacity and generation dominates China's power system

First Priority: Decarbonization of the power system

China's electricity generation has huge potential in decarbonization

China's Electricity Generation by Fuel

Low Carbon Scenario

Reference Scenario

12,000 12,000 Geothermal Geothermal Biomass Biomass Solar Solar 10,000 10,000 Wind Wind Electricity Generation (TWh) Electricity Generation (TWh) Nuclear Nuclear 8,000 8,000 Hydro Hydro Thermal Thermal 6,000 6,000 63% 56% 38% 4,000 4,000 76% 76% 2,000 2,000 14% 0 0 2010 2015 2020 2025 2030 2035 2040 2050 2010 2015 2020 2050 2045 2025 2030 2035 2040 2045

Source: Khanna, N. et al. 2017. "China's Trajectories beyond Efficiency: CO₂ Implications of Maximizing Electrification and Renewable Resources through 2050." 2017 ECEEE Summer Study Conference Proceedings (forthcoming).

Overview of China 2050 DREAM Modeling Methodology

Motivation and Purpose	 Few global energy models of energy demand by end-use China needs a model with end-use detail to plan and evaluate energy efficiency policies, programs and targets for: <i>Short-term:</i> 2020, 2020 energy, CO₂ intensity reduction <i>Long-term strategic planning:</i> 2050 development pathways
Capabilities & Strengths	 Bottom-up model of energy demand by end-use captures: Stock turnover models Potential for efficiency improvement by technology Energy, CO₂ and SO₂ emissions impacts of efficiency programs and technology trends Energy intensity reduction potential disaggregated by: End use sector Saturation, usage Technology size/scale
Key Outcomes	 2010-2011 study - only modelers to show a peak and plateau in China's energy and CO₂ emissions Reinventing Fire: China – informed China's 13th FYP, INDCs, US-China negotiations running up to US-China Joint Announcement on Climate Change and the Paris Agreement

Second Priority: Electrification of the economy and Additional Renewables

Scenarios are developed to evaluate impact of electrification and renewables

Reference:

Only considers policies in place as of 2010 with autonomous efficiency improvements and limited fuel switching

- Cost-effective Efficiency and Renewables:
 - Includes additional cost-effective efficiency improvements and fuel switch in demand and supply-side
- Maximum Electrification:
 - Maximized (additional) electrification in buildings for cooling, industry and transport
- Maximum Deployment of Renewable Energy:
 - Additional adoption of renewable heat and biomass in industry, solar in buildings

Key Assumptions in Maximum Electrification Scenario

	2010	2050 Reference	2050 Maximum Electrification
Transport			•
Passenger	0% EV shares	10% EV share in private cars,	75% EV share in private cars, 100%
Vehicles		30% EV share in taxis and fleet car markets	EV share in taxi and fleet car markets
Trucks	0% plug-in hybrid diesels	0% plug-in hybrid diesels	18% plug-in hybrid diesel share in medium-duty trucks, 50% plug-in hybrid diesel share in light-duty trucks
Industry		1	1
Glass Industry	0% electric melting	0% electric melting	30% electric melting to replace fossil fuel melting
Food and	0% electrification of	0% electrification of firing	10% electrification of firing to
Beverage Industry	firing		replace coal-firing
Pulp and Paper	0% electric dryers	0% electric dryers	5% electric dryers to replace heat
Industry			dryers
Commercial Buildings		1	1
Heating	1.5% air source heat pump	10-25% share for air source heat pump depending on climate zone	40-90% share for air source heat pump depending on climate zone
Cooling	0.5% ground source heat pump share	0% ground source heat pump share	20-25% share for ground source heat pump depending on climate zone
Water Heating	0% heat pump water heater share	0% heat pump water heater	48% heat pump water heaters
Residential Buildings			
Heating	1.5% air source heat pump	10%-80% share for air source heat pump depending on climate zone	40-100% share for air source heat pump depending on climate zone

Maximum Renewable Deployment Scenario include additional non-conventional renewable deployment in buildings and industry

Industry: low-temperature renewable heat and biomass

Commercial Buildings: maximize adoption of solar thermal technologies for heating, cooling and water heating

- Heating: solar thermal heating share increase to 8% by 2050
- Cooling: solar thermal AC share increase to 15-30% (depending on climate zone) by 2050
- Water heating: solar water heater increase to 30% by 2050

Significant potential for electrification across all sectors, but electricity still only accounts for 45% of final energy use with maximized electrification

Additional fossil fuel displacement feasible by maximizing renewable adoption in demand sectors

By 2050, additional renewables can displace annually:

- 85 Mtce Coal
- 7 Mtce Coke
- 54 Mtce Natural Gas
- 45 Mtce Heat
- 26 Mtce Electricity

Note: 1 Mtce = 29.27 petajoules

550 Mt CO₂ can be displaced annually beyond cost-effective fuel switching by Max Renewable Deployment by 2050

CO₂ could peak as early as 2023 with maximized efficiency, electrification and renewables

Cumulative CO₂ reductions beyond cost-effective efficiency and renewables to 2050:

- Max Electrification: 3.98 Gt CO₂
- Max Renewables: 13.2 Gt CO₂

Non-fossil power could reach 30% of China's total final energy consumption by 2050

Conclusions and Policy Implications

- China can achieve its 2030 CO₂ peaking target through several pathways, and reduce annual CO₂ by 60+% by 2050
- China's CO₂ emissions can peak as early as 2023 with only costeffective efficiency and fuel switching, but must overcome barriers including:
 - Lack of resources and knowledge for efficiency improvements
 - Distorted tariff and energy prices
 - Regional unemployment concerns and limited alternatives for fuel switching in some sectors
- Additional research needed to disentangle impact of cost-effective efficiency versus fuel switching, supply-side vs. demand-side electrification

Significant policy shifts needed to achieve additional CO₂ reductions from maximizing renewables and electrification:

- Interdependence between electrification and decarbonization of power sector, which requires resolving existing challenges and renewable integration
- Supporting policies and programs including subsidies, pilots can help promote distributed demand-side renewable technologies
- Greater awareness and capacity building on low temperature renewable heat use in industrial sectors needed – more crucial to start now given large scale and decentralized nature of Chinese industries

Thank You!

China Energy Group Lawrence Berkeley National Laboratory Berkeley, CA 94720 <u>http://china.lbl.gov</u>

> Nan Zhou nzhou@lbl.gov

Nina Khanna xzheng@lbl.gov

