

Consistent Pillars of Decarbonization

Decarbonization

Energy Efficiency Low Carbon Electricity

Electrified End Uses

Other Low Carbon Fuels

2

For deep decarbonization, efficiency alone won't be sufficient

"Residential and commercial space and water heating are fully electrified by 2050 through a transition to highefficiency heat pump technology."

Wei, Max, James H Nelson, Jeffery B Greenblatt, Ana Mileva, Josiah Johnston, Michael Ting, Christopher Yang, Chris Jones, James E McMahon, and Daniel M Kammen. "Deep Carbon Reductions in California Require Electrification and Integration across Economic Sectors." *Environmental Research Letters* 8, no. 1 (March 1, 2013): 014038. doi: 10.1088/1748-9326/8/1/014038.

Other than electrification, 3 main options exist for heating

Biomass has higher value uses than heating (in warm climates)

- Scarce resource: <1/5 of current fossil primary energy use.
- Industrial, aviation, heavy trucking, cold climate space heating will be more difficult to electrify.
- Biomass used in electricity generation with carbon capture could provide negative emissions.

POWER-TO-GAS

addresses the storage challenge

System Efficiency of Power to Gas for water heating

System efficiency of Heat Pumps

Solar Thermal

Same capital cost. Which would you choose?

Emissions to deliver heat with various technologies

Emissions to deliver heat with various technologies

Emissions to deliver heat with various technologies

Summary of potentials and costs

Option	Potential emission reduction	CO2 cost (\$/ton)
Biogas	20%	~\$300
Synthetic Methane	2-100%	\$500-1000+
Solar Thermal	50-70%	~\$200
Electrification	100%	\$100-150

Takeaways

- With high renewables fraction, electrification provides far greater emissions reduction than improving efficiency of gas appliances.
- Biogas and synthetic methane will be scarce, and better suited to more difficult end uses.
- Solar thermal comes at higher cost and lower emissions savings than Heat Pump + PV.

Acknowledgements Duncan Callaway (Energy and Resources Group,

- UC Berkeley)
- Mike O'Hare (Public Policy, UC Berkeley)
- Stefano Schiavon (Architecture, UC Berkeley)
- Catherine Wolfram (Haas School of Business, UC Berkeley)
- Energy and Resources Group Students, Faculty and Staff: Michaelangelo Tabone, Sam Borgeson, Peter Alstone, Valeri Vasquez, John Harte, Margaret Torn, David Anthoff, Kay Burns
- **EMAC Lab**
- Natural Resources Defense Council: Pierre Delforge and Merrian Borgeson

Funders: NSF Graduate Research Fellowship Program, EPA Science To Achieve Results, Robert Bosch Foundation

Appendix

Discussion questions

- Other than efficiency, what strategies are you aware of to reduce gas combustion in buildings?
- Are there any policies in place in Europe to promote electrification if heating?

New buildings need to electrify in mid 2020s, existing in 2030s.

80% reduction in 2050

90% reduction in 2050

Sheikh, I., M. Tabone, and D. Callaway. "Optimal deployment of electrified heating systems in California." In prep.

Cost per ton pretty constant, independent of emission reduction

• 10% reduction or 30% reduction costs about the same per ton.

Sheikh, I., M. Tabone, and D. Callaway. "Optimal deployment of electrified heating systems in California." In prep.

Hot water heaters could be a huge energy storage resource

- 47 Million housing units use electric water heating
- The energy difference in a 50 Gallon tank at 140F vs 120F is 2.5 kWh (or 1 kWh for a heat pump).

Magnitude of storage in existing

Tesla Powerwall vs. Grid integrated water heater

VS.

- 14 kWh
- \$5500+ installation
- \$300/kWh
- Install base: 10k?

- 1-2.5 kWh
- \$50-150
- \$20-150/kWh
- Install base:47 Million inUS

Heat pumps make it possible 17 units of heat 2 units of taken from waste heat surroundings 8 units 27 10 units 10 units Heat units Gas of of fuel Vs. of fuel of boiler useful pump energy in energy in useful heat heat

Electrification provides increasing benefit over time

A couple replacements before 2050

CA Residential Gas Breakdown

Figure ES-6: Statewide Natural Gas Energy Consumption 354 therms per household

Source: 2010 California Residential Appliance Saturation Survey

Figure ES-1: Statewide Electricity Consumption per Household

6,296 kWh per Household

