

Achieving University Campus Sustainability with Nearly Zero Energy Building Retrofits

Paula Fonseca, Pedro Moura, Humberto Jorge, Anibal de Almeida

Presented by Aníbal de Almeida – adealmeida@isr.uc.pt

University of Coimbra, Portugal

ECONOMICS

- Shrinking budgets
- Rising energy costs (FITs, rise of electricity VAT from 6 to 23%)
- Strong commitment regarding an efficient public budget management

SUSTAINABILITY

- Increasing consciousness towards sustainability and energy optimization
- Demonstration sites of sustainable renovation integrated in buildings
- Shinning example for students/future generations

Context – Key Role of Buildings

- Buildings account for 40 % of total energy and over 60% of electricity consumption in the European Union
- The sector is expanding, which is bound to increase the demand for energy services
- Therefore, reduction of energy consumption and the use of energy from renewable sources in the buildings sector constitute important measures needed to reduce the EU's energy dependency and greenhouse gas emissions.
- Article 2 of the EPBD defines a **nearly zero-energy building**: a building with a very high energy performance. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources produced on-site or nearby.

- **1992:** First building code in PT requiring minimum thermal performance (RCCTE) Although the code was important at that time, its performance requirements were not very demanding and therefore, the building offers several opportunities for energy renovation improvements.
- **2002/91/EC : EPBD -** Energy Performance of Buildings Directive
- **2010:** RECAST of Energy Performance of Buildings Directive
- On 29 July 2016, the European Commission released the Commission Recommendation (EU) 2016/1318 on guidelines for the promotion of nearly zero-energy buildings and best practices to ensure that, by 2020, all new buildings are nearly zero-energy buildings.

Timeline EPBD

By 31 December 2020, all new buildings are NZEB and after 31 December 2018, new buildings occupied and owned by public authorities are NZEB buildings. MS to draw up national plans for increasing the number of NZEBs buildings and shall develop policies and take measures to stimulate the transformation of buildings that are refurbished into NZEB buildings.

4 aspects of the systems approach

e c e e e e c e e e e c e e e e c e e e e c e e e e c e e e e c e e e on energy efficiency

Energy renovation measures in the building

- Energy audits
- Energy management system
- Retrofit of lighting systems
- Occupancy sensors
- Power factor correction
- General improvements in electrical loads (Large scale replacement of CRTs, energy-efficient heat pumps, ...)
- Installation of PV panels
- Installation of energy storage system

Building | Building Plant | Building Characteristics

· T .	
Floors	9
Exterior Walls	Concrete with thermal isolation in the outside
Interior walls	Masonry of perforated brick with thermal isolating
Windows	Simple glass
Roof	Horizontal coverage with thermal isolation
Building orientation	N
	o E s
Flooring	Wood (rooms) and marble (halls)
Ceilings	Masonry of perforated brick
Total Building Surfaces	10.000
(total sg,m)	
Lighting	Mainly T8 lamps with conventional magnetic ballast
Lighting controls	Control of the lamps by the BMS in the halls and by motion sensor in
	the classrooms.
HVAC/heating	Yes, individual systems, unevenly distributed
HVAC/cooling	Yes, heat pumps in Amphitheaters and in some research laboratories
HVAC distribution	No
HVAC controls	No, manual individual control
BMS	Control of the lightings in the halls and in the corridors, and also the
	ventilation fans in the parking garage.
Sensors/actuators	Motion Sensors in some classrooms, toilets and in some corridors
Electricity	Grid (630 kVA)
Total electricity	518 380 (in 2015, the baseline year)
consumption per year	
(KWh/year)	
Other energy sources	No
Potable water	Yes
Water heating	No
Waste water	Yes
Other characteristics	

Electricity consumption per year

Energy efficiency of the existing loads

- Replacement **old inefficient lighting and ICT** equipment
- Reduce the energy demand by adjust the existing Building Management System (BMS) to the profile needs of the users
 - controlling the use of HVAC in classrooms
 - centrally controlled lighting in corridors, occupancy sensors installed in some less used areas, lighting in public areas
- Shifting the HVAC loads to match the night tariffs and reduce peak hours' consumption

Raising awareness to influence

 Information - a software tool was developed to show, online, the actual energy and water use within the building to occupants and visitors: TV screens in the main entrance hall of the building and in the cafeteria

Yearly Load Diagrams - 2009 Vs 2015

- Replacement of part of the Fluorescent T8 lamps and halogen lamps by LEDs in the amphitheatres and in some corridors,

- Large-scale replacement of CRT monitors and inefficient computers in classrooms and laboratories by more efficient equipment

Weekly Load Diagrams (several months 2015)

29 May – 3 June 2007 Summer Study 2007 Summer Study 2007 on energy efficiency

Negative correlation between the average temperature (independent variable) and the consumption (dependent variable)

Negative correlation between the average temperature (independent variable) and the consumption (dependent variable)

Types and Quantity of Lamps Considered in the Lighting Renovation – Phase 1

Actu	Renovation				
Lamp	Quantity	Power (W)	Lamp	Quantity	Power (W)
Fluorescent Linear T8 F120	60	2,590	LED Linear F120	36	130
Compact Fluorescent	30	940	LED Spots	20	70
Halogen Spot	72	10,800	LED Spots	72	1,440
Total	162	14,330	Total	128	1,640
				\bigcirc	

Reduction on the electricity consumption of 27,1 MWh/y (90% savings)

Lamps + Luminaires

Types and Quantity of Lamps Considered in the Lighting Renovation – Phase 2

Space	Actual			Renovation		
	Lamp	Quantity	Power (W)	Lamp	Quantity	Power (W)
Classrooms	Fluorescent Linear T8 F120	30	1,300	LED Linear F120	30	600
	Fluorescent Linear T8 F150	168	11,690	LED Linear F150	168	4,030
Corridors	CFL13	40	620	LED SPOT	40	140
	HP Sodium Projectors	8	2,400	LED Projector	8	640
	Fluorescent Linear T8 F120	24	1,040	LED Linear F120	24	480
Admi. Services	Fluorescent Linear T8 F120	44	1900	LED Linear F120	44	880
	Fluorescent Linear T8 F150	4	280	LED Linear F150	4	100
Cafeteria	Fluorescent Linear T8 F120	20	860	LED Linear F120	20	400
	CFL13	28	440	LED Spot	28	100
Prof. Offices	Fluorescent Linear T8 F120	288	12,440	LED Linear F120	288	5,760
R&D Labs	Fluorescent Linear T8 F120	84	3,630	LED Linear F120	84	1,680
	Fluorescent Linear T8 F150	152	10,580	LED Linear F150	152	3,650
Teaching Labs	Fluorescent Linear T8 F120	40	1,730	LED Linear F120	40	800
	Fluorescent Linear T8 F150	368	25,610	LED Linear F150	368	8,830
Other offices	Fluorescent Linear T8 F120	24	1,040	LED Linear F120	24	480
	Fluorescent Linear T8 F150	100	6,960	LED Linear F150	100	2,400
	Total	1422	82,520	Total	1422	30,970

Reduction on the electricity consumption of 76,6 MWh/y (63% savings) LEDs -> 130 lm/W

Renewable Energy Generation

• PV panels with 270 Wp each, 732 panels

=> Installed power of 197.64 kWp

• PV panels with 270 Wp each, 392 panels

=> Installed power of 105.84 kWp

Energy generation 282 MWh, representing 54.4% of the actual energy consumption

Energy generation 152.6 MWh, representing 36.8% of the actual energy consumption

Renewable Energy Generation

29 May – 3 June ecceee ecceee ecceee ecceee on energy efficiency

eceee 29 May – 3 June eceee 2017 Summer Study eceee on energy efficiency

Technical data of the designed PV system

Total number of PV modules	392
Peak power	105.84 kWp
Number of PV inverters	5
AC active power	92.00 kW
Active power ratio	86.9%
Annual energy yield	152.61 MWh
Energy usability factor	99.6%
Performance ratio	88%
Spec. energy yield	1442 kWh/kWp
Battery Capacity	100 kWh

"Constraints" for local electricity generation

Despite the higher consumption in the building during the hours of higher generation, the building has a **low consumption** during **weekends** and during July and August (undergrad students summer vacations), leading to generation surplus.

From the economic point-of-view, this is a problem since the **price paid by the consumed energy** is much higher than the price **received by the energy injected into the grid**.

With the new Portuguese regulation to self-consumption of locally generated electricity, the energy injected into grid is paid only with a price of 90% of the monthly average price of the Portuguese spot electricity market and the average price paid during 2016 was only 0.03546 €/kWh.

	Consumption from the Grid Injection into t				
Peak	Half-Peak	Normal Off-Peak	Super Off-Peak	Grid	
0.2746 €/kWh	0.1315 €/kWh	0.0969 €/kWh	0.0956 €/kWh	-0.03546 €/kWh	

Tariffs (Including VAT) for the Energy Consumption and Energy Injected into the Grid

Distribution of PV generation (between self-consumption and grid feed-in), as well as the impact on the purchased energy considering scenarios **without** and **with** energy storage

Yearly variation of the energy generation and consumption, as well as the net-energy consumption

29 May – 3 June 29 May – 3 June ceee 2017 Summer Study on energy efficiency

- In Winter months almost all the generation is used for self-consumption
- In Summer a high share of the energy has to be injected into the grid
 - \uparrow of solar radiation ; \downarrow of consumption
 - injection of generated energy into the grid concentrated during weekends

Lower maximum load, but also a higher impact on its reduction due to selfconsumption during Summer

Daily average variation of the consumed energy with and without self-consumption

- In August, due to self-consumption the average energy consumption, between 9h and 16h is almost zero.
- It can be noticed from the daily average variation that most of the impact of the generated energy on the purchased energy occurs between 8h and 20h.
- The self-consumption ensures a reduction of 27.4% on the annual purchased electricity.
- Considering only the electricity purchased between 8h and 20h the reduction of the annual purchased electricity is 40.5%.

Energy Balance | Consumption, Savings and Generation

29 May – 3 June 20 Ceee 29 May – 3 June 20 Ceee 2017 Summer Study on energy efficiency

Total				
	414,3	103,4	152,6	261,7
PV Generation	-	-	152,6	365,4
		·	452 6	
Lighting LargeScaleReplacement	441,4	76,3	-	441,4
Lighting Parcial Replacement	490,9	27,1	-	490,9
BaselineConsumptio	on 518	-	-	518

Scenario	Final Energy	Specific Energy	CO ₂ Emissions
	(MWh/Year)	(kWh/m²Year)	(kg CO ₂ /Year)
Baseline	518	51.8	72,5
Retrofit	262	26.2	36,6
Savings	256	25.6	35,8
	49.5%	49.5%	49.5%

- The tangible improvement measures ensure 49.5% savings, decreasing the energy density of the building to only 26.2 kWh/m² year
- A conversion factor from electricity to CO_2 emissions of 140 g CO_2/kWh

Thank you!

Aníbal de Almeida – adealmeida@isr.uc.pt