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Abstract
We describe the development of “remote energy audit” tech-
niques using data from a pilot study in 500 dwellings in Ontario, 
Canada. This pilot study provided a unique combination of data 
sets: smart thermostat, occupancy events, and smart meter data, 
combined with basic information on household characteristics 
and weather data. With knowledge of building physics and oc-
cupant energy use behaviours, we deployed a variety of data 
analytic techniques to derive insights into household energy use 
characteristics. These included partial end-use disaggregation of 
electricity, opportunities for energy savings via dynamic thermo-
stat setback, and an estimate of the relative thermal efficiency of 
the house structure. The results on these metrics emphasize the 
heterogeneous nature of energy performance even across house-
holds in the same region. Such individualized remote audit infor-
mation may be a relatively inexpensive way for utilities to target 
energy efficiency programs and messaging towards households 
more likely to yield benefits.

Introduction
Residential energy use forms a substantial fraction of any coun-
try’s total secondary energy use, and improving the energy ef-
ficiency in dwellings is a key part of the energy policy of most 
countries. For example, residential energy use in Canada in 
2013 comprised 17 % of total secondary energy use, and 14 % 
of GHG emissions (NRCan, 2016). 

On-site audits of the energy performance of houses, as a fa-
cilitator of energy efficient upgrades, are supported by numer-
ous jurisdictions worldwide, and can be effective in improving 
energy efficiency and occupant comfort, specifically because 
the recommendations are customized to each house (Parekh et 
al., 2000; Frondel & Vance, 2013; Taylor et al., 2014; Considine 
& Sapci, 2016). However, such audits, conducted by profession-
als, are invasive and relatively expensive to deploy at scale. With 
the availability of new datasets from smart devices and public/
existing databases, there is the potential for utilities (or others) 
to use data analytics to conduct “remote energy audits” without 
entering the home (Zeifman & Roth, 2016). Remote audits will 
not be as accurate and detailed as on-site audits, but can be ex-
ercised at a fraction of the cost.

Utilities have often advertised the same energy efficiency 
program to all customers, regardless of circumstance. The-
oretically, remote audit information will enable utilities to 
target energy efficiency programs towards households most 
likely to accept the offer, and most likely to yield benefits to 
the householder and the utility. One option may then be to 
elevate financial incentives to the target households, further 
increasing likelihood of program participation, and raising 
the effect of incentive investments. Retailers and their service 
providers have been using data to target advertising for years, 
and utilities are now starting to follow their lead (Du Bois, 
2014).

Data-driven and innovative approaches to enhance residen-
tial energy efficiency began with benchmarking and feedback 
on social norms: in simple terms making higher users aware of 
how they compare to others, with the goal of eliciting behav-
ioural change, in some cases supported by incentivized technol-
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ogy (Ehrhardt-Martinez, 2012). Some approaches have focussed 
on classifying (or segmenting) households into socio-economic 
groups, and using survey data to understand which groupings 
have a greater propensity for energy program uptake and to tar-
get programs toward these groupings (Du Bois, 2104; Horizon 
Utilities Corporation, 2014). Simply targeting customers with 
pre-existing higher energy use may yield substantial benefits for 
conservation programs (Taylor et al., 2014). Alternative meth-
ods look at patterns of energy use using hourly load profiles, 
enabling, for example, targeting of air-conditioning demand re-
sponse (DR) programs to households that tend to have higher 
usage on summer afternoons (Kwac et al., 2014; Albert & Raja-
gopal, 2015).

Other approaches come closer to the spirit of auditing, by 
deriving end-use estimates for appliances or appliance classes 
(Armel et al., 2013), or identifying particular characteristics 
of the house, or the behaviours of its occupants, that effect en-
ergy use. Importantly, this may identify households that are 
not among the highest users overall, but which nevertheless 
could realize substantial savings in certain aspects of energy 
use. Some of these approaches require the installation of ad-
ditional hardware (e.g. high sampling rate electricity meters), 
which might offer higher accuracy or more features (although 
accuracy is still limited, see St. John, 2013), but somewhat 
subverts a scalability goal. Others rely on data that is already 
readily available to utilities, or is easily obtained (Birt et al., 
2012; Schmidt, 2012). The rapidly increasing deployment of 
advanced (or smart) metering infrastructure worldwide (Ac-
centure, 2013), and greater availability of weather, geo-spa-
tial and demographic data generally, offers opportunities to 
develop more smart audit features. Advanced insights may 
be enabled particularly when data science is married with a 
strong understanding of building physics (Zeifman & Roth, 
2016).

Connected (or smart) thermostats are undergoing rap-
id market uptake, and offer the potential for identifying en-
ergy efficiency opportunities from the high volume of data 
that they typically collect, and one such opportunity is sup-
port for remote auditing (Rotondo et al., 2016). Data from 
smart thermostats typically include: setpoint temperatures, 
actual indoor temperatures, HVAC (heating, ventilating and 
air conditioning) system runtimes, and, in some cases, mo-
tion sensor data.

This paper describes the development of a variety of remote 
energy audit techniques using data from a pilot study provid-
ing a unique combination of data sets: both smart thermostat 
and smart meter data, combined with weather data, and basic 

information on household characteristics. These insights high-
light the potential to target energy efficiency programs and 
messaging using relatively straightforward, and scalable, ana-
lytical techniques.

Household Sample and Descriptive Data
The pilot project was managed by a Canadian telecom service 
operator. A typical install of their Home Energy Management 
System (HEMS) consisted of: a smart thermostat, two wireless 
motion sensors, two wireless door sensors, and two wireless 
smart plugs to monitor and control appliances. These devices 
were connected using a Zigbee wireless mesh network to the 
telecom service operator’s data servers via an internet gateway. 
We aggregated event-based smart thermostat and motion/door 
sensor data to hourly values, and merged these with hourly, 
whole-house smart meter data from the local electrical utility 
company, and hourly weather data from Environment Cana-
da. The telecom service operator also provided information on 
household characteristics reported by the home owner when 
they first engaged with the HEMS (on-boarding).

The Canadian telecom service operator provided data for 
564  houses. The dataset contained energy and thermostat 
data (setpoints, actual temperatures, HVAC run-times) for 
527 dwellings, motion/door (occupancy) data for 416 houses, 
and household characteristics data for 254 houses. Table 1 sum-
marizes the household characteristics; the two dwellings were 
electrically heated and were removed from further analysis, all 
other dwellings were gas heated.

There were 515 houses that had energy consumption records 
for at least 8000  hours from March 2015 to February 2016 
(inclusive). Figure 1 shows the distribution of average hour-
ly energy use among those houses1; mean=1.05 kWh, medi-
an=0.90 kWh, standard deviation (SD)=0.56 kWh.

Furthermore, Table 2 shows the average hourly electricity 
consumption by number of household occupants. As expected, 
average total energy use increased systematically with the num-
ber of occupants.

These data are consistent with comparable studies, and add 
to our confidence that this sample is representative. Newsh-
am et al. (2011) examined electricity data from 320 houses in 
Southern Ontario in 2008, and reported a mean hourly elec-
tricity use of 1.0 kWh over a full calendar year. Other studies 

1. Ten houses were excluded from this analysis because they were clear outliers 
(total energy use was three standard deviations above the mean).

Table 1. Characteristics of sample dwellings.

Dwelling Type Total
Number of Bedrooms Number of Occupants

2 3 4 5 1 2 3 4 5

APARTMENT 2 1 1 1 1

ATTACHED 51 1 36 13 1 3 11 12 14 11

DETACHED 201 1 39 127 34 7 35 41 64 54

Grand Total 254 2 76 140 36 10 46 54 78 66
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conducted in Ontario report typical average hourly household 
electricity use of 1.0–1.2 kWh (Strapp et al., 2007; Navigant, 
2008). Newsham et al. (2011) further reported that electricity 
use increased linearly with number of household occupants.

Figure 2 shows average hourly load and occupancy activity 
profiles for winter months, as an example, for weekdays and 
weekends separately. As expected, higher energy use was as-
sociated with a higher frequency of occupancy-related events. 
On weekends the morning increase in electricity use was later 
and less pronounced than on weekdays. Average energy use de-
clined during the middle of the day on weekdays because many 
homes are vacated during these hours, but this decline did not 
occur on weekends when daytime occupancy is more common; 
overall, energy use was higher on weekends than weekdays.

Disaggregation of Energy Use

REFRIGERATION AND PHANTOM LOAD USE
Some electrical loads, such as refrigerators and other plugged-
in appliances (so called “phantom loads” or “base” or “standby” 
loads) draw energy continuously (at the hourly level). To esti-
mate these loads in each house we examined electricity use dur-
ing hours when HVAC was not operating. We then rank-ordered 
these hourly loads and considered the 10th percentile value; this 
served to exclude hours with the highest discretionary appliance 
use, while also eliminating hours with very unusually low con-
sumption. This approach is likely to primarily identify consump-
tion during typical overnight hours. Figure 3 shows estimates for 
all houses2; mean=0.35 kW, median=0.30 kW, SD=0.23 kW.

From 327 Southern Ontario houses from 2008, Birt et al. 
(2012) reported a result of 0.3 kWh/hour using a similar ap-
proach. Nelson (2008) reported results of a similar study 
of~300 households in British Columbia, Canada, the average 
base load was 0.30 kW for single-family dwellings, and 0.15 kW 
for row houses. In 12 highly-instrumented households in Brit-
ish Columbia, Nelson et al. (2014) reported an average baseload 
of 0.29 kW, the major contributors to which were refrigeration, 
computing and entertainment, and water heating (if applica-
ble). By comparison, the estimates derived in our study appear 
credible. Typical average base loads for houses in Europe (based 
on measurements from >1000 households) are about half these 
values, consistent with lower electricity use compared to North 
America generally, with refrigeration comprising about half the 
total base load in Europe (Grinden & Feilberg, 2008).

AIR CONDITIONING (AC) USE
We considered summer data and hours in which there were no 
occupancy events (to reduce variation in the energy use due 
to discretionary appliance usage). The data were plotted (x-
axis: fraction AC runtime/hr, y-axis: kWh/hr total household 
energy use) and a robust regression analysis was performed3. 

2. We also applied a further filter, removing hours in which there were some oc-
cupancy events, to provide extra assurance that there was minimal discretion-
ary appliance use. This reduced the sample size substantially, but produced very 
similar results to Figure 3.

3. Given that run-time data were available directly from the thermostat, this was 
the most direct way to estimate AC size. Absent run-time data, AC size might be 
estimated by plotting electricity use vs. outside temperature, as described in Birt 
et al. (2012).

An example from one house is shown in Figure 4. There is con-
siderable scatter in the data, reflecting the variability across all 
electricity end-uses and all hours. Very low values of electricity 
use during high run-time hours might reflect data communica-
tion errors, or times when the thermostat called for cooling but 
when the AC unit was disconnected. Nevertheless, the regres-
sion trend is obvious. Subtracting the regression fit at value “0” 
(AC was not running) from the fit at value “1” (AC was running 
all hour) gives an estimate of the size of the central AC unit 
controlled by the thermostat, in kW.

There were 122 houses with applicable data for which the R2 
value of the regression was above 0.6, and for these the estimat-
ed AC size (kWh per hour/hour=kW) is shown4 in Figure 5; 
mean=2.63 kW, median=2.45 kW, SD=0.90 kW.

Direct measurement of 390 residential AC units in Ontario 
showed an average power draw of 1.93 kW (min. 0.99 kW; max. 
5.01 kW) (KEMA, 2009), whereas Toronto Hydro (2016) guid-
ance on energy use suggests 3.5 kW for a central air-condition-
er. The mean value of 2.63 kW that we derived lies within this 
range, and by comparison, the estimates derived in our study 
appear credible. We can calculate the annual energy use for AC 
in each house by multiplying the estimated AC size by the total 
hours and partial hours of AC runtime5. Figure 6 shows the esti-
mated annual energy used for AC cooling for houses with suit-
able data; mean=952 kWh, median=752 kWh, SD=792 kWh.

4. This includes the power draw of the central circulation fan.

5. We filled in missing data via the nearest-neighbour approach, based on: hour of 
day, and outside temperature.

 
 
Figure 1. Average hourly electricity consumption for sample 
dwellings.

Table 2. Average hourly electricity consumption by number of household 
occupants.

# of occupants 1 2 3 4 5
Mean (kWh) 0.52 0.94 0.98 1.16 1.38
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Figure 2. Average load and occupancy event profiles for the winter season (December 2015–February 2016) for the sub-set of houses with 
suitable data.

Figure 3. Estimate of refrigeration and phantom loads for all houses.

Figure 4. Example of regression used to make an AC size estimation for a single house, regression R2=0.79.
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Newsham & Donnelly (2013) generated a statistical model 
for residential electricity and gas use based on a large sample 
of households across Canada. Using their coefficient for central 
cooling, and applying average cooling degree day values for To-
ronto, yields an estimate of ~700 kWh/yr. Newsham & Donnel-
ly (2013) quote other estimates of residential central AC energy 
use in Canada, including British Columbia at 346 kWh/yr and 
1,963 kWh/yr for Quebec, both of which have a milder summer 
climate than Southern Ontario. By comparison, the estimates 
derived in our study appear credible. 

FURNACE FAN USE
Dwellings heated by natural gas in this pilot used a central 
furnace (typically in a basement), with warm air distributed 
throughout the dwelling using ducts and an electrically-pow-
ered circulation fan. To disaggregate the furnace fan electricity 

use, we employed a similar technique to the AC consumption 
estimation, considering records from the heating season during 
which no occupancy events were recorded. Figure 7 shows the 
estimated furnace fan power draw for all houses with suitable 
data6; mean=0.50 kW, median=0.49 kW, SD=0.22 kW.

The Canadian Centre for Housing Technology (CCHT) 
comprises full-scale single-family detached research houses 
built to standards similar to the current Ontario Energy Code. 
Measurements of the power draw of examples of both Perma-
nent Split Capacitor (PSC) and Electronically Commutated 
Motor (ECM) type furnace fans at the CCHT showed their full 

6. The furnace fan is a smaller load than AC, and thus more difficult to estimate. 
We tried limiting our estimates to houses where the regression R2 was >0.6. 
This reduced the sample size substantially, but produced very similar results to 
Figure 7.

35 
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Figure 5. Estimate of AC size for the sub-set of houses with strong regression fits.

Figure 6. Estimated energy use attributable to the AC for the sub-set of houses with suitable data.
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output power was 0.49 kW and 0.28 kW, respectively (Gusdorf 
et al., 2002). The PSC type is the most common in residential 
applications. Consumer guidance on furnace fan wattage rang-
es from 0.35–0.75 kW (Toronto Hydro, 2016; Consumer Re-
ports, 2016). By comparison, the estimates derived in our study 
appear credible.

Potential Energy Savings from Additional Thermostat 
Setback
More savings can result from additional thermostat setbacks 
during absence or night-time than those programmed in the 
houses, either because no setback7 was programmed at all, or 
because the programmed setback was not as deep as it poten-
tially could be. A smart thermostat, supported by occupancy 
information, could engage such setbacks automatically (e.g. 
Lieb et al., 2016). To estimate the upper limit of these sav-
ings for the heating period, we summed all the HVAC runt-
ime hours when the thermostat setpoint was above 18 °C, and 
there were no occupancy-related events in the three previous 
hours8. For the cooling season, we summed the HVAC runt-
ime hours when the thermostat setpoint was below 25.5  °C 
and there were no occupancy related events in the three pre-
vious hours9.

Note, however, our analysis was limited to houses for which 
reliable occupancy event data were available. Reliability could 
have been compromised for several reasons, including: the oc-
cupancy/door sensors were not installed; the sensors were in-

7. We use the generic term “setback” for both heating and cooling seasons. In the 
heating season, this means lowering the thermostat setpoint during absences or 
overnight, in the cooling season it means raising the setpoint.

8. Given that the occupancy-related sensors might not capture all occupant activ-
ity, we chose three hours as an (arbitrary) safety factor to be confident that the 
house was indeed unoccupied.

9. 18 and 25.5 °C were guided by the setpoints reported in a survey of Canadian 
households (NRCan, 2010); they were within the range of reported values, but 
towards the more energy-efficient end of the range.

stalled but not in places where activity occurred; the sensor bat-
teries failed; or, there was a wireless data transmission error.

Figure 8(a) shows the estimated additional HVAC runt-
ime savings in the heating season, for houses with suitable 
data; mean=144.0  hours per house, median=127.5  hours, 
SD=92.1 hours. Figure 8(b) shows similar data for the cooling 
season; mean=48.4 hours, median=33.2 hours, SD=56.6 hours.

We consider this analysis an upper estimate of the potential 
savings in runtime hours for several reasons. First, the sugges-
tion that setback could be deeper than 18/25.5 °C might not be 
acceptable to the occupant. Second, we are suggesting that all 
run-time hours will be saved with these additional thermostat 
setbacks. In fact, if the absence is long enough that the internal 
temperature reaches the setback temperature the HVAC sys-
tem will resume operation. Finally, when the resident returns 
there may be additional energy use in HVAC activity to recover 
to the occupied setpoint. The exact energy impact of these ef-
fects depends on occupancy schedules, solar gains and other 
exterior conditions.

Some consideration needs to be given to how big the auto-
mated setback should be, and to house temperature recovery 
time, given that the occupant may be returning to a tempera-
ture they had not programmed. The safest choice is what might 
be termed a “shallow setback”, perhaps only 1 °C, which would 
be unlikely to be noticed by a returning occupant, and is within 
the deadband and measurement error margin of many ther-
mostats anyway.

Relative House Structure Thermal Characteristics
This analysis is based on a variant of the basic heat balance 
equation for a house, in the absence of solar gains (Eq. 1):

 
 Figure 7. Estimated furnace fan power draw for all houses with suitable data.
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where,
∆Ti 	change in indoor air temperature in one hour
U 	 integrated envelope heat loss characteristic due to con-

ductive and infiltrative processes
A 	 exposed area of building
To 	 outdoor air temperature
Ti 	 indoor air temperature
Qint 	 internal heat gains (e.g. waste heat from appliances, oc-

cupant metabolic heat)
Qf 	 heat gains from furnace
Mt 	 thermal mass characteristic (higher thermal mass means 

slower change in temperature for a given heat gain)

This can be expressed as a simple linear equation (Eq. 2):

y = mx + c

where,
y = ∆Ti 
x = (To – Ti)
m = UA/Mt

c = (Qint + Qf)/Mt

From the thermostat data we know the indoor air temperature 
in any given hour and its change during that hour, and we know 
the outdoor air temperature from Environment Canada data, 
therefore, we can conduct a regression on these data and es-
timate the m and c parameters. A relatively high value of m, 
meaning relatively high heat loss, indicates a relatively poorly 
insulated envelope, an envelope with relatively high air leakage, 
a relatively large envelope area10 or a house with relatively low 
thermal mass, or a combination of all three. 

To estimate these parameters in the heating season, we looked 
at the time period when the house cooled down at night after the 
night setback started. Note that in this situation Qf = 0 and c rep-
resents internal gains (and thermal mass) only. For each house, 
the cool down time was recorded along with the average inside 
and outside temperature observed at that time (the cool down 

10. Note, it might be possible to parse out the effect of envelope area with data on 
house size, supplied either by the homeowner or from a public database.

period was only recorded if the indoor temperature drop over-
night was at least 1 °C). Thus, for a single night, ∆Ti is the tem-
perature drop in the cool down period divided by the time that 
the cool down took, and (To–Ti) is the difference between the 
average outdoor and indoor temperatures during that period. 

An example of a single night of time series data is shown in 
Figure 9. We identified the beginning of the house cool down 
period at night-time when temperatures started falling con-
sistently, 23:55 in the example in Figure 9. We identified the 
end of the cool down period when the indoor temperature did 
not drop anymore and/or the furnace started, 03:37 in the ex-
ample in Figure 9. The indoor-outdoor temperature difference 
was ((20.5+17.8)/2)–2.25=16.9 °C. The cool down rate was thus 
2.7/3:42=0.73 °C per hour. Note that in the Figure 9 example 
the indoor temperature drop during cool down was very linear.

We did this for all nights with valid data for a single house. 
Finally, we performed a linear regression on this set of points to 
find the amount of time it took for the house to cool down as a 
function of the temperature differences between the inside and 
the outside. To limit the regression artefacts, we constrained 
the regression to output models with non-negative intercept11. 
Figure 10 shows the resulting “rate vs. temperature difference” 
plot for all nights for the same single example house.

The best fit regression line in Figure 10 was: Y=0.07*X+0.28; 
this generates the m (slope=0.07) and c (intercept=0.28) param-
eters in Eq. 2. We then computed these parameters for all houses 
with suitable data, and the result is shown in Figure 11. Note 
that the houses with the largest slopes also tend to have the larg-
est intercepts, suggesting common causes that affect both pa-
rameters. For example, these could be houses with relatively low 
thermal mass, or relatively large houses that would tend to have 
larger envelope areas and higher internal gains. Nevertheless, for 
houses with low intercept values, there was a range of slopes, and 
those with larger slopes could be targets for energy efficiency 
programs designed to improve envelope performance.

11. A negative intercept would mean that the house keeps losing temperature even 
though the outside temperature is equal to the temperature inside the house, a 
physical impossibility.

Figure 8. Upper estimates of HVAC runtime hours savings due to additional setback in the (a) heating season, and (b) cooling season, for 
houses with suitable data.

(a) (b)

 
 

!



5-065-17 NEWSHAM ET AL

1010  ECEEE 2017 SUMMER STUDY – CONSUMPTION, EFFICIENCY & LIMITS

5. BUILDINGS AND CONSTRUCTION TECHNOLOGIES AND SYSTEMS

Conclusion
The growing availability of house performance data from 
smart thermostats, smart meters, and public databases offers 
many possibilities for estimating various house characteristics 
and quantifying savings opportunities at the individual house 
level. Segmentation of household populations based on such 
estimates may be used to target energy efficiency programs to-
wards houses most likely to benefit. In principle, this may in-
crease program participation, and yield more benefit for a given 
program investment. 

Data from a sample of typical houses in Ontario, Canada 
demonstrated some viable approaches for deriving such char-
acteristics and opportunities related to end-use disaggrega-
tion, automated thermostat setbacks, and thermal character-
istics of the houses. The end-use disaggregation estimates were 
credible compared to other methods on similar house popula-
tions: mean refrigeration and phantom loads were estimated as 
0.35 kW, the mean central AC size was 2.63 kW, and the mean 
furnace fan power draw was 0.50 kW. For many houses, a hun-
dred or more of hours of potential HVAC run-time could have 

 
 

 
 

 
 

Figure 9. Indoor temperature cool down during night-time 
setback for a single house on a single night, showing derivation of 
parameters for our analysis.

Figure 10. Cool down rate vs. temperature difference for an 
example house over the heating season. The best fit regression 
line is shown. 

Figure 11. Estimated cool down rates of all houses with suitable data. The colours of each point represent the variability explained (R2) by 
the regression fit for each house.
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been saved by automatically adjusting the thermostat when no 
occupancy was detected for an extended period. Further, ana-
lysing the rate at which a house cools down overnight provides 
an indicator of relative thermal efficiency. Doubtless, other en-
ergy efficiency insights may be gained by further analysis of 
similar data by researchers with a knowledge of building phys-
ics, occupant behaviour, and data science. For example, house-
holds whose electricity demand has greater coincidence with 
the system-wide peak could be identified, and be targeted for 
demand-response programs.

The next step should be to validate remotely-derived house-
hold characteristics by comparison to on-site physical audits. 
If successful, future market research should test the hypothesis 
that targeting programs based on these estimates and segmen-
tation does indeed lead to program benefits.
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