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Abstract
In this paper, we demonstrate a novel benchmarking technique 
to identify buildings with a potential to reduce energy consump-
tion, taking into account both weather effects and building 
characteristics. The proposed method will quantify if a build-
ing’s energy usage is dependent on outside temperature, and the 
degree of dependency over time. Our method prepares the data 
for analysis in a way that can improve the results from bench-
marking techniques. A demonstration is performed with the use 
of two different data envelopment analysis (DEA) models. The 
first DEA model without taking into account temperature, and 
a second where temperature is included as a non-controllable 
variable. Results suggest that the that the average store is 28 % 
less efficient than the most efficient stores. Further, our analy-
sis show that using our suggested analytical framework will im-
prove the accuracy of the efficiency scores compared to more 
standard methods. This is an important finding suggesting that 
our proposed methodology has advantages over existing bench-
marking methods. 

Introduction
Somewhere between 30 and 40 % of the global energy con-
sumption occurs in buildings (United Nations Environment 
Programme, 2007). Thus, buildings represent an important 
opportunity to reduce energy consumption, and further help 

mitigate global warming, one of the world’s most important 
problems. In recent years, researchers have proposed a num-
ber of methods to analyze and improve energy efficiency in 
buildings. A number of data driven approaches have been 
developed (Wang et al. (2012), Chung (2011), Lee and Kung 
(2011)). While simulation approaches have high accuracy, the 
data driven approaches have the advantage of being able to ana-
lyze a large number of buildings, and at the same time con-
sider multiple parameters; both weather conditions and build-
ings characteristics (Lee and Kung, 2011). Some data driven 
studies use regression models to to evaluate energy efficiency 
of both buildings (Lee (2010), Lee and Lin (2011a), Lee and 
Lin (2011b), Chung (2012), Kavousian and Rajagopal (2014)), 
schools (Hong et al (2014)) and guest rooms (AlFaris et al 
(2016)). In this paper we use data envelopment analysis (DEA) 
to study the most energy efficient buildings. Nonparametric 
DEA is a mathematical programming technique used to find 
an efficiency frontier which consists of the most efficient build-
ings. The DEA methodology has been applied to benchmarking 
energy efficiency in buildings (Lee (2008), Lee and Lee (2009), 
Lee and Kung (2011), Wang et al (2015)), in hotels (Önüt and 
Soner (2006)), in university departments (Tu (2015)), of tech-
nical equipment (Du, Jin and Fan (2015), Blum (2015)), on an 
industrial level (Blomberg et al (2012), Al-Refaie et al (2016)) 
and on a more regional level (Wang et al (2013)). DEA is 
emerging as one of the leading energy benchmarking methods 
(Lee and Lee (2009), Grösche (2009), Önüt and Soner (2006), 
Lu et al. (2014), Chung(2011), Borgstein et al (2016)). Further, 
for example, Lee and Lee (2009) use DEA together with climate 
adjusted energy consumption. They analyze 47 government 
buildings in Taiwan, and find the energy performance to vary 
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between 31 % and 100 %, where the average was 65% energy ef-
ficiency. However, while an important contribution to further 
the understanding of what drives energy usage in government 
buildings; because of the lack of detailed daily temperature 
data, they had to incorporate monthly average temperatures 
in the model. Using daily temperature data could possibly im-
prove the accuracy of the result. Next, in a more recent publi-
cation, Wang et al (2015) use data envelopment analysis with a 
degree-day based simple normalization approach. To normal-
ize the climate effect, the degree-day method has typically been 
used (Ferrier and Hirschberg, 1992). For example, the cumula-
tive variation of temperatures in a period can be expressed as 
number of degree-days through eq 1. (Eto, 1988).

Degree day = ∑(A-B)	 (1)

Where A  =  average daily outdoor air temperature, and 
B  =  changing point temperature (CPT); the temperature at 
which no heating is required. Earlier studies (including Wang 
et al. 2015) use standard published values for the CPT; in the 
U.S., they use 18 °C. However, each store might have a sepa-
rate CPT, and to increase the accuracy of degree-days it is an 
advantage to calculate each building’s individual CPT. Histori-
cally, lack of data has made this very difficult. However, today, 
detailed energy and climate data is readily available. In Norway, 
weather data can easily be accessed online through met.no and 
setting up an API that downloads data at request (sometimes 
even with hourly temperature data) from a building’s closest 
weather station is relatively easy. In addition, increased use of 
smart meters have made energy data both more available (of-
ten through online solutions at request) and at a more detailed 
interval, normally kWh. Our approach takes advantage of these 
data, and to the best of our knowledge, we are not aware of any 
studies that uses a similar approach. 

The remainder of the paper is structured as follows. In the 
methodology section we explain in more detail how regression 
analysis is used as a technique to prepare data for data envelop-
ment analysis (DEA), and further the idea behind DEA is ex-
plained in more detail. We then present the results, discuss the 
implications of the results and give some further research sug-
gestions, at last the conclusion.

Methodology
The analysis starts with standard linear regression to analyze 
the relationship between daily average outside temperatures 
and daily energy use for 132 Norwegian retail stores. If tem-
perature is not found statistically significant, no adjustment for 
weather effects needs to be undertaken. However, if tempera-
ture is found to be an important variable to explain energy use 
we need to quantify this. The quantification is done with piece-
wise linear regression to estimate the changing point tempera-
ture (CPT) for each of the buildings. Once the CPT is estab-
lished we automatically collect the average daily temperature 
from each store’s closest weather station, and finally we can use 
the CPT and the outside temperature to calculate degree-days. 
This is in contrast to using a fixed CPT for all stores, which 
is the traditional approach. At this point we have an accurate 
understanding of the impact temperature has on energy usage. 
This, together with data about building characteristics can in-
crease the accuracy of the results from energy benchmarking 

techniques like data envelopment analysis (DEA). More spe-
cific, our approach consist of the following four steps to bench-
mark energy efficiency of buildings:

1.	 Collect meter data for all the 132 buildings in the analysis 
(done automatically through a web-service directly to a da-
tabase). The meter data is on hourly basis, but we aggregate 
them into daily energy usage. The reason for this is that tem-
perature data is on a daily basis. We further use each stores 
longitude and latitude together with the corresponding lon-
gitude and latitude for every Norwegian weather station, 
and map the closest weather station to the store; then down-
load the actual daily average temperature. Data is collected 
for the year 2015. 

2.	 We further perform a linear regression with the data (at 
a daily level). One regression model for each store. Ener-
gy consumption is used as a dependent variable, and tem-
perature as the independent variable. We then collect R2 (a 
measure of how many percent of energy usage can be ex-
plained by temperature) and the corresponding p-value 
(for testing if temperature is statistical significant, we use 
p >= 0.01 to reject any relationship between energy usage 
and temperature).

3.	 In this step we find each buildings individual changing 
point temperature (CPT), following the approach of Day et 
al. (2003). Traditionally, because of lack of data, a fixed value 
has been used (in the U.S. 18 °C). However, buildings vary 
in terms of heating schedule, thermal properties, and so-
lar gains. To find the CPT we apply piecewise linear regres-
sion (PLR), a method that allow us to detect breakpoints in 
a time series (Hansen, 2000) – in this case the breakpoint 
indicates the outside temperature when a building start 
to use more energy as the temperature decrease. The PLR 
model is an iterative routine that search through all possi-
ble breakpoints for a particular building, and the breakpoint 
that “wins” is the model with the lowest residual MSE (mean 
square error). It is an efficient machine learning technique. 
This routine is then implemented for all the buildings, re-
sulting in 132 individual CPT; at last we use eq.1 (above) 
with the appropriate daily temperature (from the closest 
weather station) to calculate the degree-days. This is done 
programmatically through a program that loops through all 
the data and stores the results in a data file.

4.	 The data is now aggregated from a daily to a yearly figure for 
benchmarking purposes. We now have yearly energy usage 
and yearly heating degree-days (based on the results from 
a regression model and a PLR model) At last, we join this 
with building characteristics such as size (m2) and run-time 
(number of hours the store is open). Then data envelopment 
analysis (DEA) is conducted and the results are presented 
and discussed.

In Figure 1 our conceptual model of the benchmarking frame-
work is presented.

The efficiency scores are calculated based on data envelop-
ment analysis (DEA). DEA is a non-parametric method first in-
troduced by Charnes, Cooper and Rhodes (CCR), (1978). DEA 
measures the relative efficiency between homogeneous units 
and estimates a composite score for each unit under considera-
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tion. Efficient units will obtain a score of 1 (100 %), while ineffi-
cient units will receive a score less than one but greater than zero. 
The objective is to minimize input (maximize output) holding 
output (input) fixed. The method calculates efficient utilization 
of resources by applying mathematical programming and has 
gained popularity as a well-suited tool for benchmarking, within 
both operations research and business economics. One of the 
advantages of the method is the ability to incorporate multiple 
inputs and multiple outputs. DEA, unlike parametric methods, 
do not require an a priori functional form. The main disadvan-
tage is its sensitivity to outliers and a thorough investigation of 
possible outliers is necessary for a reliable result. 

The CCR model assumes constant returns to scale, allow-
ing possible scaling of units in the analysis. This implies allow-
ing units of different size to be compared. Banker, Charnes and 
Cooper (BCC), (1984) further developed the model to account 
for variable returns to scale. Assuming variable return to scale, 
the BCC model ensures that units in the analysis will be com-
pared to other units of similar size. Banker and Morey (1986) 
developed a model for incorporating exogenously fixed or non-
controllable variables as some variables affecting the produc-
tion process may be outside the control of individual units.

Investigating energy efficiency, the term decision-making 
unit (DMU) represents the different retail stores. Considering 
a set of n observations of DMUs, each DMU j(j ∈n), uses mC 
controllable inputs xij(i ∈mNC) to produce s outputs yrj(r ∈s), af-
fected by mNC non-controllable inputs. By creating a piecewise 
linear approximation DEA determines an efficient frontier or 
best practice frontier by these n observations and returns an ef-
ficiency estimate, θ0, for each DMU0. The model is specified for 
DMU0 as follows: 

	 (2)

s.t. 	 (3)

The LP problem in eq.2 is an input-oriented variable returns 
to scale (VRS) minimizing controllable inputs whilst holding 
non-controllable inputs and output at a constant level. Using 
the VRS model the additional restriction, 	 , is in-
cluded compared to the constant returns to scale (CRS) model 
in Charnes, Cooper et al. (1978). This allows for comparing the 
DMU under consideration (DMU0) to a similar DMU(s), of ap-
proximately the same size. 

Figure 2 shows a conceptual illustration of the DEA model 
compared to a standard ordinary least regression (OLS) model. 

The OLS fits through the data points, A-F, illustrated by the dot-
ted line, whereas the DEA model assuming variable return to 
scale technology envelops the data points creating a piecewise 
linear frontier (solid line). This DEA frontier, created by the 
best practice units, serves as the benchmark technology for in-
efficient DMUs. In short, DEA optimizes each company indi-
vidually (by benchmarking it against its closest peers), whereas 
traditional statistical methodologies rely on averages or single 
optimization approaches.

Results

LINEAR REGRESSION – ENERGY VERSUS OUTSIDE TEMPERATURE
In the first stage of the analysis, we run 132 regression models 
with daily energy as the dependent variable and temperature 
as independent. In 91 of these models we get a p-value < 0.01, 
thus in 68 % of the stores we find that temperature from a sta-
tistical standpoint affects daily energy usage. However, we find 
large variation among these stores in terms of R2 (the percent-
age variation of energy usage explained by temperature). The 
minimum R2 between the 91 stores is 0.019, while maximum 
is 0.83, and the average is 0.16. One important reason that we 
see such variation is that many stores have systems to take ad-
vantage of waste heat from the refrigeration. In Figure 2, we 
see a histogram of the distribution of the R2 values, showing 
that most of the stores have an R2 lower than 0.4 – seven stores 
have a larger R2. These results enable us to filter out the stores 
where we need to calculate heating degree-days, performed in 
the next step of the analysis. 

OPTIMIZED CHANGING POINT TEMPERATURES (CPT)
In this step we present the results from the piecewise linear 
regression (PLR). The method detects CPT for each store by 
partitioning the independent variable (temperature) into inter-
vals, and a separate regression line is fit to each interval. Then, 
the model with the lowest residual MSE (mean square error) 
is used to find the CPT-value. Thus, PLR runs a series of mod-

Figure 1. Conceptual model of benchmarking framework.
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els for every store to find the optimized CPT (the algorithm 
was set up to search within the entire observed temperature 
range, resulting in a more extensive search for stores with a 
large difference between the maximum and the minimum ob-
served temperature). The average CPT for the 95 stores where 
we found a significant relationship between energy usage and 
temperature is 7.3 °C, median equals 6.7 °C, with minimum 
equal to 3 °C and maximum 18.9 °C. The distribution of the 
CPT temperatures can be seen in the boxplot below.

The default changing point temperatures (CPT) in Norway 
(and Denmark) is 17 °C. While these are undocumented val-
ues, they still are often in use as reference temperatures when 

calculating degree-days (NVE report, 2014). The average CPT 
we find is almost 10 °C below this default temperature. Previous 
studies has found CPT values in houses, office buildings, edu-
cational buildings, hospitals and hotels ranging from 9.7 °C till 
13.2 °C, also with variations between weekdays and weekends 
(Pedersen, 2007). Other studies have investigated CPT for both 
heating and cooling demand (Lindberg & Doorman (2013), 
Lindberg et al. (2015)). Our findings demonstrate larger varia-
tion than previous studies. One important reason that the CPT 
are considerably lower in some of the buildings that we analyze 
is that many of these stores have heat recovery systems, and 
the building structures of retail stores might be very different 

Figure 2. Conceptual visualization of DEA methodology.

Figure 3. Distribution of R2 between the 132 different stores where outside temperature was found to be statistically significant.

Figure 4. CPT temperature for 95 stores (with statistical significant relationship between energy usage and outside temperature).
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from for example an office building. The variation in CPT and 
the deviation from standard default temperatures demonstrates 
that it is important to calculate individual CPT, as the follow-
ing degree-day calculation will be very different if using stand-
ard values (e.g. 17°C). For example, earlier studies (Wang et al. 
2015) use standard published values for the CPT; in the U.S., 
they use 18 °C as their starting point for degree-days calcula-
tions before inclusion in a DEA benchmarking study. Our ap-
proach improves this, and increases the accuracy of efficiency 
benchmarking of buildings. 

In Figure 5 we show a scatter plot of average daily tempera-
tures against daily energy usage in kWh for three of the stores, 
two buildings were the outside temperature is highly correlated 
with energy usage. The figure clearly visualizes a strong linear 
relationship between kWh and temperature for store number 
“1810”, together with the estimated CPT of 7.1 °C. Store num-
ber “1810” has an R2 of 0.83, meaning that 83 % of the variation 
in energy usage can be explained by variation in temperatures. 
Similarly, the R2 for store number “2003” is 0.67. The vertical 
line shows the CPT as found through piecewise linear regres-
sion. Visually inspecting the plots in figure 5 it could be argued 
that the CPT looks to be more to the right for building no. 1810, 
however the “breakpoint” has been set automatically from the 
piecewise regression model based on the lowest residual MSE. 
Further, for store “1409” we find no similar relationship, and 
conclude that this is a building where there is no need to find 
the CPT and to calculate degree-days. Still, for store “1409” the 
vertical line shows the proposed CPT, as the piecewise linear 
regression runs through all stores, not taking into account if 
the relationship between energy and temperature is statistically 
significant. Obviously, this needs to be taken into account. The 
reason we find no relationship between electricity and temper-
ature for building no. 1409 is that it is a food store and has a lot 
of waste heat from the refrigeration system. We are also investi-
gating if there might be other energy carriers for this particular 
building. In the DEA analysis in the next section we will run 
DEA-models with degree days included for all stores, and an-
other DEA-model including degree-days for stores where there 
is a significant relationship between energy usage and outside 
temperature. 

RESULTS FROM DEA ANALYSIS
In the DEA-analysis, the input variable selected is annual en-
ergy consumption (kWh). As outputs the area of the build-
ing (m2) and the number of opening hours are chosen (“run-
time”). As we have seen in the previous section of the paper, for 
some buildings the energy consumption is heavily dependent 
on the outside temperature. We include the non-controllable 
input variable yearly degree-days for each store into the model 
to account for this. Still, we conduct to different DEA models:

Model 1: Modelling with run-time and size as output vari-
ables and degree-days as exogenous variables without taking 
into consideration if temperature is statistically significant.

Model 2: Modelling with run-time and size as output vari-
ables and degree-days as exogenous variable taking into ac-
count if temperature is statistically significant. In particular we 
set yearly degree-days = 0 for all the stores where we find no 
climate effect.

This approach enables us to look at the efficiency scores be-
tween these two modelling choices, and in particular compare 
the DEA efficiency scores for the stores with and without the 
climate effect. As indicated, the result of the DEA is highly sen-
sitive to individual units. This potential problem has been re-
solved by removing potential outliers from the original sample. 
The distribution of the efficiency scores are shown in Figure 6.

The average efficiency from model 1 is 0.72 or 72 %. Given 
an optimal store in terms of energy efficiency this means that, 
we can potentially reduce the electricity consumption with a 
considerable 28 % (on average). Of the 132 stores in model 1 
we find that 32 of them are 100 % efficient. We get exactly the 
same average efficiency score for model 2 (setting yearly de-
gree-days = 0 in the DEA output variable where no climate ef-
fect is found). Moreover, as we can see from Figure 6 the there is 
little visible change in efficiency between the models. However, 
only 30 of the stores are found to be 100 % efficient in model 2, 
and more importantly, the efficiency scores changes between 
many of the stores. For example, looking at the 37 stores where 
we found no climate effect and comparing the efficiency scores 
between model 1 and model 2 we find an average change in ef-
ficiency scores of 7 %, ranging from a reduction of 34 % to an 
increase of 53 %. This is an important finding, and we conclude 

Figure 5. Temperature versus daily electricity usage for three example stores for year 2015, vertical line indicating the CPT from the 
piecewise linear regression models.
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that if we do not include climate effect in the analysis the ef-
ficiency scores might turn out very differently. The change in 
DEA efficiency scores between model 1 and model 2 for the 
37 stores can be seen in Figure 7. For the tallest bar (10 stores) 
there is practically no change in efficiency, however we see that 
for the other 27 stores, including climate effects has an impact 
on the scores. 

Discussion and outlook
We have planned a number of actions based on the results in 
this paper. First, the stores with the lowest efficiency scores 
will be visited and analyzed carefully to better understand the 
factors behind the low efficiency score. Could there be equip-
ment in these stores that work under non-optimal conditions? 
Further, based on this work (using hourly data from the least 
efficient stores) we are planning on developing predictive mod-
els to be used to indicate stores in need of maintenance (typi-
cally service request and maintenance are very expensive for 
the store owners). A sample of the stores with efficiency scores 
of 1 will also be visited to better understand the underlying fac-

tors. In future work more detailed information about the stores 
will be included in the DEA model, for example more details 
about building materials, lightning, building age, heat recov-
ery system, and amount of cooling/freezing equipment. Future 
work will also consider more detailed estimation of the CPT, 
as the changing point could vary between weekdays and week-
ends. For example, Pedersen (2007) found the CPT for an office 
building to be 11 degree Celsius during weekdays, and 11.6 de-
grees during weekends. Taking into account this variation 
could further improve the accuracy of the presented efficiency 
scores. At last, further studies would benefit from outlining dif-
ferences between the International Performance Measurement 
and Verification Protocol (IPMVP) (Energy, 2001).

Conclusions
We found that the presented modeling framework is a good ap-
proach to rank the energy performance between retail stores in 
Norway. We have also demonstrated the importance of a build-
ing’s individual climate effects in a DEA model. We saw that 
not taking into account climate will affect the efficiency scores 
and changes them by, on average, 7 %. The largest change for 
an individual store was an efficiency increase of 53 %. We have 
also seen that the availability of detailed climate and energy 
data (often on hourly level), improves the methods of ranking 
building from an energy usage perspective. Using our methods 
to rank a large portfolio gives quick insights into the least and 
most efficient buildings, and can be used as a foundation for 
further investigation into retail buildings with low efficiency 
scores, or to learn from best performers. 
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