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Abstract
Integrating photovoltaic (PV) electricity generation into the 
German energy system is proving to be a growing challenge due 
to its fluctuating nature. The combination of more rigid regula-
tion for feeding PV power into the grid and steadily rising elec-
tricity prices means that energy storage devices are becoming 
more attractive to private households as a way of upping their 
energy self-sufficiency. At the same time, storage systems make 
the household’s power purchasing strategy more complex. For 
these reasons, control concepts are required for PV and storage 
systems that ensure system-friendly operation as well as consid-
ering the household’s primary objectives. This paper presents a 
three-part model for the forecast-based load management of a 
battery storage system in combination with a PV system. In the 
first modelling step, forecasts of hourly electricity demand and 
solar generation are created using artificial neural networks. In a 
second step, the model optimizes the energy flows considering a 
real-time price tariff based on EPEX Spot in addition to its main 
task of using the forecasts to maximize on-site self-consumption. 
In the third step, a control algorithm adjusts the actual energy 
flows if forecast deviations occur. The study shows that the model 
enables system-friendly operation of the battery storage as well 
as intensified usage. As an added value, the forecasting approach 
presented is closer to reality than the otherwise frequently used 
optimization algorithms that assume perfect foresight of electric-
ity load and generation. It therefore provides a real-world basis 
for planning, but also shows that the inevitable forecasting errors 

are reflected in higher electricity bills. Considering the inaccu-
racy of forecasting and the related higher cost for falling short 
on the provision of electricity for the individual household, we 
conclude that households should be paid higher rewards (e.g. by 
higher price top-up payments at peak demand or supply) if they 
supply electric energy in times of higher demand and store en-
ergy if there is abundant supply. 

Introduction
PV power is an increasingly important component in the re-
newable energy mix. In 2015, roughly 7.5 % of German elec-
tricity consumption was supplied by PV power (Wirth, 2016, 
p. 5). Until 2020 it is estimated that a minimum share of 10 % 
of total electricity consumption can be supplied by PV power 
(Bundesverband Solarwirtschaft, 2012, p. 1). However, the in-
tegration of PV power into the grid poses major challenges to 
grid operators and energy suppliers. As PV power is highly de-
pendent on the weather, its contribution to the energy supply 
fluctuates. The increased integration of PV systems in recent 
years brings with it the risk that parts of the infrastructure may 
be temporarily overloaded. Secondly, circa 80 % of all German 
PV systems are integrated into low-voltage networks, which 
were originally only intended to distribute energy in one way, 
from the energy provider to the customer. Consequently, these 
parts of the grid are not designed to deal with reverse loads 
coming from the distribution grids if PV generation peaks dur-
ing midday hours (Kairies et al., 2016, p. 12). The legislator al-
ready reacted in 2012 to counter grid overloads caused by solar 
power systems by amending the German Renewable Energy 
Act (EEG). The amendment requires even small-scale PV sys-
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tems to comply with power delivery limits of 70 % of the rated 
installed power (German Renewable Energy Act 2012). 

One way to reduce such problems is to operate PV systems 
in combination with decentralised storage systems, such as 
stationary lithium-ion batteries or the batteries of electrically 
powered cars. The decentralised storage of electricity has twin 
benefits: First, the operator of a combined PV storage system 
can increase his/her self-sufficiency, thereby reducing the need 
to procure electricity from the energy provider and making 
the operator less susceptible to rising electricity prices (Kair-
ies et al., 2016, p. 15). Second, PV storage systems can signifi-
cantly reduce the pressure on the low-voltage grid by smooth-
ing peaks in supply and demand. If electricity is stored during 
times of high irradiation, maximum feed-in can be significantly 
reduced (Moshövel et al., 2015, p. 574).

Kairies et al. (2016, p. 8) estimate that between May 2013 and 
January 2016, roughly 34,000  decentralised storage systems 
were installed in German households. The number of newly 
installed storage systems nearly doubled in the years 2014 and 
2015, amounting to a total capacity of 0.2 GWh installed in 
low-voltage grids. This is particularly surprising, because most 
of the operators of such systems do not expect their investment 
to be economically efficient. The majority of operators install 
such systems to hedge against future expected increases in 
electricity prices (Kairies et al., 2016, p. 58). Due to expected 
declines in installation and system prices and a growing inter-
est in the self-sufficient use of the generated electricity, various 
studies anticipate an increasing usage of storage systems, e.g. 
(Navigant Research (2015)). 

The mode of operation determines to which degree PV bat-
tery systems are operated in a system-friendly way (Weniger et 
al., 2016, p. 25). Important operating strategies from literature 
are summarized in Table 1. 

Struth and Kairies (2013) compare different operating strat-
egies for PV storage systems and conclude that the largest 
grid relief is achieved with a strategy using persistence fore-
casts. Resch et al. (2015) model and evaluate seven different 
operating strategies for residential storage systems in combina-
tion with grid-connected PV systems. To facilitate simulation, 
Resch et al. (2015) assume perfect foresight for all strategies 
that regularly require forecast data for load and PV generation. 
The authors show that the use of a more complex control strat-
egy improves the ability to limit peak voltage at the point of 
common coupling as well as reducing overall curtailment loss-
es. They add that the ability to achieve a high self-consumption 
ratio and the ability to reduce peak voltage are not mutually ex-
clusive. Moshövel et al. (2015) show that an operating strategy 
using persistence forecasts has a significantly higher potential 
to relieve the grid than a simple self-consumption strategy or a 
strategy with a fixed feed-in limitation of 70 %. Also, the self-
consumption rate can be kept at similar levels to the standard 
self-consumption strategy. These results suggest that forecast-
ing PV generation and load is useful to achieve system-friendly 
operation. Various forecasting algorithms have been studied for 
operating PV battery systems: Forecasts of PV generation are 
often calculated based on irradiation forecasts using Numeri-
cal Weather Models. Irradiation forecasts from these models 
are later converted into actual energy production using physi-
cal models (Mathiesen and Kleissl, 2011; Lorenz et al., 2009; Shi 
et al., 2012). Statistical models can also be applied which can 
be further subdivided into time series analysis (Martín et al., 
2010), autoregressive models (Bacher et al., 2009), ARIMA mo-
dels (Safi et al., 2002), fuzzy-based models (Boata and Gravila, 
2012) and artificial neural networks (Yona et al., 2007; Mellit 
and Shaari, 2009). Martín et al. (2010) compare the forecasting 
results of persistence, autoregressive, fuzzy-logical and neural 

Operating strategy Features Reference
Maximizing self-
consumption

– controller-based; all power exceeding local demand is stored
– charges the battery fully before noon, leaving the feed-in peaks at midday and 

during the afternoon unchanged

Struth and Kairies 
(2013), Resch et al. 
(2015)

Static/ fixed feed-in 
power limitation

– power is curtailed at defined thresholds
– a simple feed-in limitation of 70% only leads to marginal improvements in 

limiting grid voltage fluctuations

Struth and Kairies 
(2013), Resch et al. 
(2015)

Charging interval 
periods

– energy is only fed into the battery at defined times
– reduces the feed-in to some extent, but still leaves high feed-in before and 

after the interval

Struth and Kairies 
(2013), Resch et al. 
(2015)

Persistence 
forecasting strategy

– energy is stored and supplied based on persistence forecasts
– promises the largest grid relieving potential (acc. to Struth and Kairies)

Struth and Kairies 
(2013)

Scheduled time 
interval with constant 
charging power

– sets a time interval
– additional fixed constant charging power per interval

Resch et al. (2015)

Dynamic feed-in 
strategy

– based on PV and load forecasts; aims to fully charge the battery once at the 
end of the day

– the charging power and feed-in power are constantly altered during the day 
in order to fully load the battery and feed back power to the grid as little as 
possible. 

Resch et al. (2015), 
Weniger et al. (2014)

Dynamic feed-in with 
balancing 

– similar process as “dynamic feed-in”
– Charging power is simply increased during periods with expected high feed-in 

of other grid-connected PV-systems without batteries

Resch et al. (2015)

Feed-in damping 
strategy

– similar to the schedule strategy with constant charging power
– simple predictions of irradiance are used to set the time interval instead of a 

static setting 

Resch et al. (2015)

Table 1. Overview over important operating strategies for PV storage systems.
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networks when predicting local half daily solar irradiance with 
a maximum horizon of three days. They conclude that the most 
accurate results are obtained with neural networks. This result 
is confirmed by Pedro and Coimbra (2012), who compare fore-
casting results for a local PV power plant with a time horizon of 
one and two hours. They demonstrated that an approach with 
neural networks performed better than an ARIMA model, and 
a k-Nearest-Neighbours approach. In the field of neural net-
works, Fernandez-Jimenez et al. (2012, p. 315–316) and Paoli et 
al. (2010) have implemented and evaluated up to five different 
types of neural network to locally predict the PV generation of 
PV systems. Their results show that neural networks are able to 
serve the purposes of irradiation and PV generation prediction 
with the lowest forecast deviations compared to other methods.

This paper presents a new forecast-based model, which is 
suitable for the control of PV-battery systems with a time ho-
rizon of 24 hours. The model comprises three modules. The 
first creates forecast data for load and PV generation, which are 
used as input to the second module, a linear optimization mod-
ule. This optimization module allocates the energy flows on an 
hourly basis considering the price function of the European 
Energy Exchange (EEX). Finally, the third module, a control-
ler, adjusts for forecast deviations. If required, the model can 
be adapted to any system size with regard to rated PV power, 
battery capacity or electricity demand of the household. The 
output of the model is a household-specific schedule for energy 
flows in the PV storage system over the next 24 hours. To ob-
tain the simulation results presented in this paper, the model is 
trained and applied to an exemplary load and generation pro-
file over the course of one year. In order to show the impact of 
forecast errors, the presented forecast- and price-based model 
is evaluated against a controller-based model. The controller-
based model seeks to maximize self-sufficiency. Specifically, the 
results compare the system operation of the two models and re-
veal differences in the achieved profitability.

The “Methodology” section describes how the three modules 
function. The “Results” section reports the simulation results of 
the developed model and compares them with the controller-
based model. The final section “Conclusion and Outlook” sum-
marizes the findings and presents an outlook.

Methodology
The model is intended to operate a grid-connected PV storage 
system based on irradiation and load forecasts. This paper fo-
cuses on a single household and does not consider communi-

ties of households or large electricity consumers. Technically, 
the model represents a grid-connected battery storage, a PV 
system and converters. The system topology is AC-coupled, 
implying that the battery is connected to an AC-Bus via an AC/
DC converter and a load regulator (see Figure 1). The advan-
tage of the specified topology is that the complete system can 
be easily extended with additional PV modules and the battery 
system configuration can be modified independently of the PV 
system. 

The model is implemented in JAVA and the frameworks “En-
cog Machine Learning” and “Gurobi Optimizer” are used. The 
modules are illustrated in Figure 2. First, the forecast module 
provides the system with 24-hour predictions of household 
load and PV generation. The forecasts algorithms are based on 
artificial neural networks; their output is then fed into mod-
ule 2. This module creates optimized schedules for the energy 
flows between PV system, battery, household consumer and the 
grid based on a quadratic optimization approach. Naturally, the 
use of forecast algorithms means there are deviations between 
forecast values and actual values. A controller is then used to 
observe and compare the forecast values to the measured values 
of the current hour. The whole forecast and optimization pro-
cess is repeated on an hourly basis and the energy flows are ad-
justed accordingly should forecast errors occur. Since changes 
in the energy flow schedule also cause the state of charge (SOC) 
of the battery to deviate from its originally calculated state, a 
new – controller-adjusted – SOC is fed back into the optimiza-
tion module at the end of every hour. In the following section, 
all three modules are described in more detail.

FORECASTING WITH ARTIFICIAL NEURAL NETWORKS (MODULE 1)
The forecast module predicts future PV generation of the 
household’s PV systems as well as its future load on an hourly 
basis. For this purpose, artificial neural networks (ANN) are 
used. As explained above, ANN are particularly suitable for 
forecasting in the renewable energy field as they are capable 
of learning and provide non-linear parametric models. They 
have the capacity to recognize patterns in data sets, memorize 
the structure and use the acquired knowledge at a later point in 
time (Paoli et al., 2010, p. 2149). 

There are different types of ANN, for example, Multilay-
er Perceptron Networks (MLP, also called feed-forward net-
works), Radial Basis Function neural networks or Recurrent 
Neural Networks and many more (Dreyfus, 2005). To imple-
ment the ANN in this study, the open-source library “Encog 
Machine Learning” was used and adapted to the model’s needs. 

PV system

Load

DC/DC converter AC/DC converter
=

=
=
≈

Battery load regulator AC/DC converter
=

=
=
≈+

-

Battery

Grid

Configuration of PV system

AC-Bus

Configuration of battery system

Figure 1. AC-coupled PV battery-system topology.
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Historical training data sets were fed into the ANNs in the form 
of time series, including historical weather conditions, meas-
ured historical PV generation and historical load data. In the 
subsequent training phase, all the data were presented to an 
internal pattern recognition algorithm, which follows the rules 
of a predefined learning algorithm. At the end of the training 
phase, the acquired knowledge of the pattern recognition pro-
cess was saved and the networks were ready to predict future 
time series. 

As the example in Figure 3 shows, an ANN is comprised of 
so-called neurons and organised in layers. These neurons are 
connected with each other and the information that passes be-
tween them is multiplied by a specific weight according to its 
importance for the results. These weights are adjusted during 
the training phase and store the learned “knowledge”. Accord-
ingly, an input aj is passed from one neuron j to the next neuron 
i and is multiplied by the weight wij The resulting ajwij is one ar-
gument of a transfer function: 

which provides the input for the next neuron i. The transfer 
function defines the distribution of information between neu-
rons and may be exponential, linear or sigmoid. During the 
training process, the weights are continuously modified based 
on the presented training data, the chosen transfer function 
and the rule of learning. Depending on the kind of neuron, in-
formation is received from outside the system or from other 
neurons. In a feed-forward network, layers are categorised by 
input layer, output layer and hidden layer and information is 
processed in only one direction, from input layer to output lay-
er. Each of the neurons is assigned to one of these layers and 
each layer can include any desired number of neurons. The in-
put layer receives data from outside the network, the output 
layer represents the interface to the outside world (Mubiru, 
2008, p.2329; Paoli et al., 2010, p. 2149).

The best network configuration (number of neurons in each 
layer, number of hidden layers, learning rule and transfer func-
tion) is determined more or less by a “trial-and-error” process. 
Possible useful set-ups have been examined by Tymvios et al. 
(2005), Sözen et al. (2004) and Kern (2013). In this paper, the 
selected network is a feed-forward network and most of the 
other parameters are determined based on the promising re-
sults of Kern (2013). Three layers were chosen (1 input layer, 

1 hidden layer and 1 output layer) for both load and PV forecast 
models. Three input neurons are created for the PV generation 
forecasting model to receive the underlying meteorological 
data. One input neuron is set for the ANN of the load forecast, 
which receives load data of the previous weekday. The hidden 
layer contains 3 neurons and uses a sigmoid transfer function. 
As learning rule, backpropagation was selected, meaning that 
during the training process, the calculated output values were 
constantly compared with the true (measured) vector of PV 
generation values. Subsequently, the error was fed back into the 
network and the process repeated until the smallest possible 
overall error occurred. 

The training period covered two months (59 days) and was 
run with 6,000 iterations. The simulation and prediction time-
frame is 1 year (365 days). Finally, the input values had to be 
normalized on an interval of 0.0 to 1.0 due to the chosen sig-
moid function. The ANN were run on an hourly basis and re-
trained with updated data.

Input & Output data
The input data for training the ANN include location-based 
measured historical data of load and PV generation as well as 
archived meteorological data. In more detail, the training data 
for the network to predict short-term PV generation include 
archived data for global irradiance, the ambient temperature 
and relative humidity of a measuring station of the German 
Meteorological Service located 18 km from the considered lo-
cation Meteorological Service, 2016). The PV generation data 
were taken from the “SonnJa!” project in Berlin. The project’s 
PV module has an orientation of 35.0° south-west and an in-
clination of 14.6 ° (einleuchtend e.V., 2016). The measured PV 
generation profile was scaled to match the installed rated ca-
pacity of a PV module with a maximum of 5.0 kWp and annual 
full load hours of 1,134.3 hours (based on our own calculation). 
A data set with load values from the preceding weekday was 
handed over to the network as training input for the load ANN. 
The exemplary load profile is taken from the Intelliekon study 
and comprises hourly recordings for one household with an 
annual consumption of 3,300 kWh and no installed PV (Pub-
likationen – Intelliekon, 2016). Please note that this exemplary 
household is not representative.

During the prediction phase of the next 24 hours, normally 
meteorological forecast data has to be used in the PV ANN. 
Such data is based on more complex numerical weather predic-
tions and can be obtained free of charge from various weath-

Forecasted 
values

Optimized 
schedule 
of energy 
flows

System
Adjusted 
schedule of 
energy 
flows

State of charge (SOC)

Historically 
measured values

Forecasts of 
load and 

generation

Module 1:

Optimization of 
energy flows

Module 2:

Controller

Module 3:

Day-Ahead-Prices Measured values 
of current hour

Figure 2. Schematic illustration of the forecast-based model.
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er forecasting services such as the Global Forecasting System 
(National Centers for Environmental Prediction., 2016), Open 
Weather Maps (OpenWeatherMap, 2016) or the German Mete-
orological Service (German Meteorological Service, 2016). See 
Fernandez-Jimenez et al. (2012, p. 312) for a more detailed de-
scription of using and refining meteorological data from met-
rological services. However, as forecasted meteorological data 
are hard to obtain in retrospect for the specified location, ar-
chived meteorological data have been used for the prediction 
step in this paper (German Meteorological Service, 2016). This 
makes the output of the forecast module more accurate than it 
would be in reality (see Result chapter).

The battery’s usable capacity amounts to 5.0 kWh, the charg-
ing and discharging efficiency factor is 95.2 % and the battery 
can be completely charged and discharged during the time 
frame of one hour.

The ANN predict load and PV generation data on an hour-
ly basis for the next 24 hours. Before being transferred to the 
second (optimization) module, the data is further processed 
into “deficit generation” and “excess generation”. The optimi-
zation module only needs to know whether there is a surplus 
or deficit of electricity in any specific hour. If the current elec-
tricity generation of the PV system is larger than the current 
consumption of the household, the residual generation is called 
“excess generation”. If the current PV generation is lower than 
the household’s current demand, the power is defined as “deficit 
generation”. These are the output values of the first module and 
are subsequently used as input into the second module.

OPTIMAL STORAGE OPERATION (MODULE 2)
The second module creates a schedule containing the energy 
flows between PV module, battery, household and grid. If the 
sun is shining and the PV module is able to provide power, the 
possible energy flows are: direct consumption of the household 
supplied by the PV module, charging the battery, direct grid 
feed-in or curtailment (if feed-in limits are exceeded). If the 
PV module produces no or too little electricity in comparison 
to the household’s demand, the possible energy flows are: dis-
charging the battery to the household or drawing electricity 
from the grid to supply the household’s demand. Independent-
ly of the actual PV generation, the optimization algorithm can 
decide to discharge electricity from the battery into the grid. 

The “Gurobi Optimizer” framework is used for implementa-
tion. The model represents an optimization problem defined 

by an objective function and multiple constraints. As the con-
straints include real numbers as well as quadratic terms, the 
optimization is classified as a mixed integer quadratically con-
strained programming problem. 

The objective function is:

Maximize Inc:

	 ,

where Inc is the annual income in €Cent, Dt is the time step 
of one hour, PDirGrid( t ) is the hourly direct grid feed-in of the 
PV module, PBatDis(t) represents the discharge and grid feed-in 
of the battery, pDayAhead (t) is the hourly electricity price from 
the European Energy Exchange (EEX), PCover (t) depicts the 
battery supply of the household’s demand, €29.14Cent/kWh 
is the opportunity price according to 2014 average house-
hold tariff prices and PCurt (t) is the curtailment of generation 
if feed-in limits are exceeded. Curtailment is neutrally rated 
with €0  Cent/kWh and is only allocated by the optimiza-
tion if no other solution is possible. According to the objec-
tive function, the optimization problem is structured so that 
the hourly energy flows are weighted by the electricity price 
(day-ahead price) of the respective hour or a flat tariff price. 
These weighted energy flows are maximized over a time pe-
riod of 24 hours with the objective to defer the energy flows 
from hours with low prices to hours with high prices. Finally, 
the daily revenues are summarized over the full period of one 
year. The time frame of the optimization starts on 01.03.2014 
and ends on 28.02.2015. The constraints are divided into 
technical, economic and regulatory. The technical constraints 
consider the 5.0 kWh maximum usable capacity of the bat-
tery, its charging and discharging capacities (the battery can 
be completely charged and discharged within one hour) and 
the efficiencies of battery and converters (which are a com-
bined 95.2 % for each cycle). Furthermore, the battery can-
not be used for charging and discharging at the same time. 
Finally, all the generated electricity must either be used or 
curtailed within one time step. The regulatory constraints are: 
The battery may not be charged from the grid and the feed-
in limitation of 70 % of the maximum rated power of the PV 
module must be respected. The two economic constraints are: 
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Figure 3. Structure of a feed-forward network. 
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Supplying the household’s demand is always prioritized and 
the household’s demand must always be supplied by either the 
battery or the grid.

Input & Output data
The input data for the optimization module are “deficit genera-
tion”, “excess generation”, state-of-charge of the previous sim-
ulation steps and day-ahead electricity price. The day-ahead 
prices can be obtained from the European Energy Exchange 
(EEX). These prices are calculated by EEX one day ahead by 
an auction procedure. These prices are published by 13:00 of 
the present day at the latest and cover hourly electricity prices 
for the whole of the subsequent day. The output of the second 
module is an exact schedule for every hour of the following day 
containing the energy flows by scale and form.

CONTROL ALGORITHM (MODULE 3)
Naturally, deviations occur during the forecast in comparison 
to the actual (measured) values. This is why the scheduled ener-
gy flows have to be constantly adjusted. The control algorithm 
only works during the present hour and makes adjustments for 
differences between values occurring in real time and the pre-
viously calculated energy flows. The controller adopts the deci-
sion of the optimization module in a first step and only tries to 
change the quantification of the energy flow. However, if any 
constraint is violated, a detailed, but static ranking list is fol-
lowed. This list is stored in the controller and includes the eco-
nomically next best solutions. Finally, the controller outputs a 
corrected timetable of the energy flows.

OPERATION OF THE MODEL
The annual simulation is subdivided into 24 hour steps which 
are executed repeatedly on an hourly basis. The process of con-
tinuously shifting the calculation period into the future in small 
time steps is called a “Rolling Horizon”. Figure 4 exemplarily 
describes one simulation step. Every full simulation step com-
prises one forecast & optimization phase and one execution 
phase. During the forecast & optimization phase, the ANN is 
trained with newly measured data of the last hour; forecasts 

of load and PV generation for the next 24 hours are calculat-
ed and the optimization module schedules an operation plan 
for the energy flows. The execution phase covers one hour and 
includes the execution of the control algorithm, which adjusts 
the optimized energy flows to account for forecast errors. Af-
ter completion of the execution phase, the forecast & optimiza-
tion phase is repeated and the whole time frame is shifted one 
hour into the future. Furthermore, for the new simulation step, 
the (adjusted) SOC from the previous calculation is required, 
which is also passed on by the controller algorithm.

ALTERNATIVE OPERATION STRATEGIES
The operation strategy developed above is defined as a fore-
cast- and price-based operation strategy. In order to compare 
the operation results of this strategy with another alternative 
operation strategy, a controller-based operation strategy is also 
considered. The controller-based operation strategy is a simple 
one, currently regularly used in private households. As soon 
as the PV system generates electricity, this is first used to meet 
the household’s demand. The share of generation which ex-
ceeds demand is stored in the battery if capacity is available. 
As soon as PV generation falls below the household’s demand, 
the battery supplies electricity to the household. This strategy is 
considered disadvantageous since full capacity is often reached 
during morning hours before PV generation reaches its peak at 
noon and in the afternoon. Furthermore, if a feed-in limitation 
has to be obeyed, curtailment losses will frequently occur.

ECONOMIC EVALUATION MEASURES
The savings and revenues resulting from the operation of a PV 
storage system are both considered for the economic analysis. 
Savings occur if the household’s power demand can be self-
supplied either by the battery or by the PV system directly and 
power does not have to be purchased from the electricity sup-
plier. The opportunity price for savings is estimated with a con-
stant value of €29.14 Cent/kWh (=the households electricity 
price according to (BDEW, 2016)). Secondly, revenues can be 
made according to the market bonus scheme under the EEG, 
allowing the household to directly sell the electricity surplus to 
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Figure 4. Illustration of one simulation step.
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other market participants. In addition to the thereby realized 
price, a top up, the market premium, is paid. The paid market 
premium is the difference of the reimbursement rates specified 
in the EEG and a monthly average stock price. Hence, the mar-
ket bonus scheme enables the individual household to make 
profits when feeding in at times of high prices by exceeding 
these average stock prices.

Results
The presented model is run in a simulation over the period of 
one year with 2014 prices. The simulation was run simultane-
ously with the controller-based model for the purpose of com-
parison. The simulated household, which is located in Berlin, 
has an annual electricity demand of 3,300 kWh and an installed 
rooftop PV system of 5.0 kWp. The useable lithium-ion storage 
battery is 5.0 kWh and grid-connected in a way that allows it to 
be discharged into the grid. A maximum feed-in power limit of 
70 % is applied to comply with the current German Renewable 
Energy Act (German Renewable Energy Act 2012, p.12).

FORECASTING RESULTS
In the following, the results of the first part of the model, the 
forecast, are illustrated. The forecast model is able to calculate 
PV generation and load data with a rolling horizon of 24 hours. 
The forecasting quality is measured using the relative root 
mean square error (rRMSE), which is defined by:

	 ,

where Pf is the hourly forecasted PV generation value, PA is 
the hourly real measured value, N the total number of hours 
in the data set and Pinst is the rated (maximum) power of the 
PV modules. Alternatively, to measure the accuracy of the 
load forecasts, Pinst needs to be replaced by Pmax_load . Pmax_load 
depicts the maximum value of demand of the household. An 
rRMSE of 9.5 % results from predicting and testing the PV 
data over one year. This error causes a total error of the PV 
generation by 0.3 %. The results are comparable to the find-
ings of Fernandez-Jimenez et al. (2012, p.315), who find an 
rRMSE of 11.8 % and an error of 0.6 % in overall PV genera-
tion data using similar forecasting and error calculation tech-
niques. This paper achieves a slightly better performance of 
PV generation forecasts since Fernandez-Jimenez et al. (2012) 
use real and partially refined forecasted meteorological data 

from NWP to carry out predictions for the next hours with 
artificial networks. In contrast, measured meteorological data 
have been used for these predictions in this paper. This is due 
to the fact that archived forecasted meteorological data are 
hard to obtain in retrospect for one specified location. The 
irradiation data input has the strongest positive variable im-
portance for the PV generation data, represented by an over-
all weight of 23.1, followed by air temperature with 11.1. The 
relative atmospheric humidity showed a negative, but strong, 
variable importance of -27.1.1

For the load forecast, the rRMSE is 9.3 %. The error value 
shows slightly better results compared to a simple weekly per-
sistence forecast with a rRMSE of 12.0 %. 

Figure 5 illustrates exemplary forecast data in comparison 
with measured data for one sunny week in August 2014. The 
prediction of PV generation is illustrated on the left and the 
load curve with measured and forecasted data is depicted on 
the right. The pattern of generation is adequately mapped, 
while the load pattern is more volatile and harder for the mod-
ule to predict. It is remarkable that neither the peaks in real 
generation nor the peaks in load are adequately reflected.

Running the simulation over an entire year shows that the 
load and generation peaks are systemically underestimated. 
Here, the main problem arises from the net effect of adding 
up generation and load, which is carried out in every simula-
tion step between Module 1 and Module 2. Module 1 only fore-
casts the PV generation and load but passes on the net differ-
ences “deficit generation” and “excess generation” to Module 2 
(see Chapter Input & Output data in Forecasting with ANN). 
Based on this, the left-hand side of Figure 6 shows the mean 
excess generation for every month in the examined year. Apart 
from slight overestimations of the forecasts in June and July, 
mean excess power generation tends to be underestimated in 
the annual perspective. We find the same bias when analys-
ing the forecasted mean deficit generation (right-hand side of 
the figure): Forecasted deficit generation is always lower than 
measured values. Figuratively speaking, in comparison to real 
data, the total annual deficit generation is underestimated by 
354.1 kWh/a (-18.2 %) and the total annual excess generation 
is underestimated by 429.6 kWh/a (-10.0%).

1. To measure input variable importance on the output, the “Connection Weight” 
method is used following Olden and Jackson 2002 and Olden et al. 2004.
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STORAGE OPERATION RESULTS
Figure 7 shows the results of the two operation strategies de-
scribed above for one week in July. Positive values indicate ex-
cess power from the PV system or positive demand and battery 
storage values. Contrarily, negative values stand for the house-
hold’s PV self-consumption either by discharging the battery or 
by directly consuming the generated PV power. Furthermore, 
the price function is illustrated by the dotted line. It can be seen 
that the controller-based strategy stores all the excess energy in 
the battery as soon as it occurs (and independent of the current 
price) which tends to be during morning hours. As a result, the 
battery is regularly fully charged before noon, leading to steep 
rises in grid feed-in and curtailment losses in the afternoon. In 
contrast to the controller-based operation strategy, the price- 
and forecast-based operation strategy operates the storage in a 
more system-friendly way. Energy storage is deferred (price-
sensitively) from morning hours to hours when prices are 
higher (see dotted area). Secondly, the forecast-based opera-

tion system is able to detect future peaks in generation and con-
sequently reserves battery capacity for later hours. Due to this 
possibility of foresight, curtailment losses are reduced or even 
avoided at noon and during the afternoon. Overall curtailment 
losses are reduced to 13.2 kWh/a (0.2 % of total real generation) 
in comparison to 56.2 kWh/a (1.0 % of total real generation) 
when using the controller-based operation strategy. Secondly, 
over the course of one year and in comparison to the control-
ler-based operation strategy, the forecast-based model achieves 
119.5 % more energy feed-in during times of high prices (top 
50 % of prices) and 47.5 % more energy is stored in the bat-
tery during hours of low prices (bottom 50 % of prices). A side-
effect of the price and forecast-based operation strategy is that 
the total amount of electricity stored in the battery is increased 
by 22.8 % compared to the controller-based model. 

This effect is explained by the fact that battery discharge into 
the grid is allowed and the electricity market price is consid-
ered. These framework conditions lead to a higher amount of 
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Figure 6. Forecasted/measured excess generation & forecasted/real deficit generation (monthly mean).

Figure 7. Comparison of three exemplary days in July with different operation strategies.
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electricity. The highest gains at the end of the year can be re-
alized with the controller-based strategy, which achieves 
€172.58 in returns. As the table shows, this is mainly due to 
the fact that this strategy achieves the highest savings by us-
ing the battery supply (column 3). The overall difference here 
to the forecast-based strategy underlines the impact of forecast 
errors. At the end of the year, the forecast-based strategy loses 
€7.86/a (difference in electricity bills) in total compared to the 
controller-based strategy. This amount represents the net effect 
of the forecast errors. As already illustrated above, the forecast 
errors strongly affect the supply of the household’s demand 
and the self-consumption rate because too much energy is dis-
charged from the battery and PV system into the grid too ear-
ly during the day. This results in higher revenues of €499.78/a 
(vs. €464.96/a) from the feed-in of the battery (column 4) and 
the PV system (column 5), but much lower savings due to the 
battery supply (column €3, 230.93/a vs. €273.61/a). Hence, the 
losses outweigh the efficiency gains of a more price-sensitive 
feed-in. Beside the above described effects, this is particular-
ly since the opportunity cost for undersupplying a household’s 
demand is valued with a flat tariff at €29.14Cent/kWh, whereas 
energy fed into the grid was remunerated with a maximum of 
€19.83 Cent/kWh in 2014.

Conclusion and outlook
An operating model was developed for a single household’s 
combined PV-storage system. The developed operating strat-
egy is able to control energy flows with a forecast horizon of 
24 hours and in an hourly resolution based on demand and 
generation forecasts and the price function of the Europe-
an Energy Exchange. Artificial neural networks are used to 
forecast PV generation and load and a quadratic optimiza-
tion approach is applied to control energy flows. The neural 
networks are updated every hour with recent measured data 
from the household and a meteorological station. Deviations 
from forecasted values are taken into account using a control 
algorithm. The system’s performance is compared to a stand-
ard controller-based strategy. We were able to show that the 
forecast- and price-based strategy is more system-friendly be-
cause power storage is deferred price-sensitively from morn-
ing hours to hours with high solar irradiation. This results 
in higher grid feed-in during hours of higher prices and in-
creased amounts of stored energy during hours of low prices. 
119.5 % more energy was feed-in during times of high prices 
and  €56.41/a could be earned in revenues by discharging sur-
plus energy from the battery into the grid. Our strategy also 
intensifies overall stored electricity to the battery by 22.8 %. 
At the same time, the forecast-based optimization algorithm 

energy which is not fed into the grid directly when it is gen-
erated, but stored temporarily in the battery to benefit from 
higher prices later. It has already been discussed that the fore-
cast-based strategy underestimates total excess and deficit 
generation over the year (see chapter above). One direct con-
sequence of the underestimated deficit generation is that the op-
timization module expects lower demand in the afternoon and 
at night. This means the battery is often excessively discharged 
into the grid earlier to benefit from high prices, since electric-
ity is not expected to be needed later to supply the household’s 
demand. Subsequently, if the household requires more energy 
than expected, the battery is already empty and cannot meet 
the demand. Forecast errors in excess generation are an indica-
tor for failing to foresee peaks in generation. Since the goal of 
the model is to use the battery as intensively as possible, too 
high rates of loading capacities are scheduled too early during 
the day. Later, if solar radiation is higher than planned, no free 
battery capacity is available to offset the peaks. 

The first effect of these forecast inaccuracies is that curtail-
ment losses cannot be avoided entirely, resulting in total cur-
tailment losses of 13.2 kWh/a. Secondly, as the price-based op-
eration strategy strives to maximize income at all times, but at 
the same times underestimates future demand, too much en-
ergy is fed into the grid from the battery during periods of high 
prices. It becomes clear that the forecast-based operation strat-
egy feeds in higher amounts of energy every month, while si-
multaneously fails to meet the household’s demand. In an an-
nual perspective, the grid feed-in is 5.2 % (3,377.4 kWh vs. 
3,210.1 kWh) higher with the forecast-based strategy than with 
the controller-based strategy and the household supply using 
the battery is 15.6 % lower (792.5 kWh vs. 938.9 kWh). Due to 
the resulting undersupply of the household’s demand, the self-
sufficiency rate2 is only 65.3 %. A self-sufficiency rate of 69.7 % 
is achieved with the controller-based strategy.

ECONOMIC CONSIDERATIONS
Table 1 summarizes the possible savings and revenues for the 
two operating strategies and for a standard household without 
a combined storage and PV system (as reference). The last col-
umn shows the electricity bill, which has to be paid to the en-
ergy supplier at the end of the year.

The annual electricity bill of both operating strategies is 
compared to the case with no installed PV system (reference). 
As the control algorithm always prioritizes the supply of the 
household’s demand, each strategy equally saves €398.91  of 

2. The self-sufficiency rate is defined as the share of the household’s electricity 
demand which is supplied either by discharging the battery or by directly consum-
ing PV-generated power.

Table 2. Overview of achievable savings and revenues with the different strategies.

Operating strategy Savings due to 
direct consumption  
(PV system) [€]

Savings due to 
battery supply 
of household 
demand [€]

Revenue due 
to feed-in of 
battery [€]

Revenue due to 
feed-in  
of PV system [€]

Electricity 
bill [€]

No PV System – – – –  964.90
Controller-based strategy 398.91 273.61 – 464.96 -172.58
Forecast-based strategy 398.91 230.93 56.41 443.37 -164.72
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Kern, F. (2013), Wechselrichter-Kommunikation und Solarlei-
stungsprognose, Masterthesis at AFIB, Karlsruher Institut 
für Technologie, Karlsruhe.

Lorenz, E.; Hurka, J.; Heinemann, D.; Beyer, H. Georg (2009), 
Irradiance forecasting for the power prediction of grid-con-
nected photovoltaic systems. In: IEEE Journal of selected 
topics in applied earth observations and remote sensing, 
Vol. 2 (1), p. 2–10.

Martín, L.; Zarzalejo, L. F.; Polo, J.; Navarro, A.; Marchante, R.; 
Cony, M. (2010), Prediction of global solar irradiance based 
on time series analysis: application to solar thermal power 
plants energy production planning. In: Solar Energy, Vol. 
84 (10), p. 1772–1781.

Mathiesen, P.; Kleissl, J. (2011), Evaluation of numerical weath-
er prediction for intra-day solar forecasting in the continen-
tal United States. In: Solar Energy, Vol. 85 (5), p. 967–977.

Mellit, A.; Shaari, S. (2009), Recurrent neural network-based 
forecasting of the daily electricity generation of a Photovol-
taic power system. In: Ecological Vehicle and Renewable 
Energy (EVER), Monaco, March, p. 26–29.

Moshövel, J.; Kairies, K.-P.; Magnor, D.; Leuthold, M.; Bost, 
M.; Gährs, S. et al. (2015), Analysis of the maximal possible 
grid relief from PV-peak-power impacts by using storage 
systems for increased self-consumption. In: Applied Energy, 
Vol. 137, p. 567–575.

Mubiru, J. (2008), Predicting total solar irradiation values using 
artificial neural networks. In: Renewable Energy, Vol. 33 
(10), p. 2329–2332.

National Centers for Environmental Prediction. (2016), Glob-
al Forecasting System. http://www.emc.ncep.noaa.gov/.

Navigant Research (2015), Energy Storage for Renewables In-
tegration.

Olden, J. D.; Jackson, D. A. (2002), lluminating the ‘‘black box’’: 
a randomization approach for understanding variable con-
tributions in artificial neural networks. In: Ecological Mod-
elling, Vol. 154, p. 135–150.

Olden, J. D.; Joy, M. K.; Death, R. G. (2004), An accurate com-
parison of methods for quantifying variable importance in 
artificial neural networks using simulated data. In: Ecologi-
cal Modelling, Vol. 178 (3–4), p. 389–397.

OpenWeatherMap (2016), Weather API. http://openweather-
map.org/api.

Paoli, C.; Voyant, C.; Muselli, M.; Nivet, M.-L. (2010), Fore-
casting of Preprocessed Daily Solar Radiation Time Series 
Using Neural Networks. In: Solar Energy, Vol. 84 (12), p. 
2146–2160.

Pedro, H. T. C.; Coimbra, C. F. M. (2012), Assessment of 
forecasting techniques for solar power production with 
no exogenous inputs. In: Solar Energy, Vol. 86 (7), p. 
2017–2028.

Publikationen – Intelliekon (2016), ISOE: Publikationen Intel-
liekon. http://www.isoe.de/projekte/abgeschlossene-pro-
jekte/energie-und-klimaschutz-im-alltag/.

Resch, M.; Ramadhani, B.; Bühler, J.; Sumper, A. (2015), 
Comparison of Control Strategies of Residential PV Storage 
Systems. In: 9th International Renewable Energy Storage 
Conference and Exhibition, Düsseldorf, 9.03.–11.03.

Safi, S.; Zeroual, A.; Hassani, M. (2002), Prediction of global 
daily solar radiation using higher order statistics. In: Re-
newable Energy, Vol. 27 (4), p. 647–666.

is able to store energy in the battery for later peaks in demand 
while simultaneously reducing curtailment losses to a mini-
mum of 0.2 % of total real generation. On the downside, the 
model suffers from excessive grid feed-in from the battery 
and therefore falls short in supplying the household’s power 
demand due to forecast errors. The economic evaluation of 
these errors shows that the total efficiency gains from the sys-
tem feeding power into the grid are outweighed by losses in 
savings due to undersupplying the household. Even though 
revenues of grid feed-in are in total higher by €34.82/a in 
comparison to the controller-based strategy, the price-based 
strategy saves substantially less (€42.68/a) due to forecasting 
errors. To sum up, this paper shows that even small forecast 
errors render system-friendly models with quite sophisti-
cated forecasting algorithms financially disadvantageous in 
comparison to simpler controller-based approaches. A sup-
posed financial advantage is further ruled out by the addi-
tional cost (e.g. interfaces to data providers, more computing 
power) of complex forecasting method like a neural network. 
Hence, if policy makers want to support the further devel-
opment of system-friendly strategies and profitability cannot 
be achieved directly during daily operation, they need to of-
fer private households more attractive remuneration schemes 
(e.g. by higher price top-up payments at peak demand or sup-
ply).
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