Estimating energy consumption by purpose and analyse standby power in non-residential buildings in Japan

June 2017
Takuo Yamaguchi
Bizen Green Energy Co. Ltd.

Prof.Yumiko Iwafune
The Collaborative Research Center for Energy Engineering (CEE)
in the Institute of Industrial Science (IIS) at the University of Tokyo

Contents

- 1. Purposes & results of the study
- 2. Measured buildings
- 3. Measurement system
- Estimating energy consumption by purpose
- 5. Standby energy consumption of non-residential buildings
- 6. Conclusions & discussion

Purposes & results of the study

The purposes of the study:

- Find method to estimate energy consumption by purpose in nonresidential buildings
- 2. Find the standby power consumption in non-residential buildings

The results of the study:

- Methods to estimate the annual energy consumption for AC, domestic hot water, lighting, cooking, transformer loss, and other devices from available data, such as monthly energy consumption & outside temperature data
- 2. Standby power accounts for 14% to 20% of electricity consumption in a non-residential building

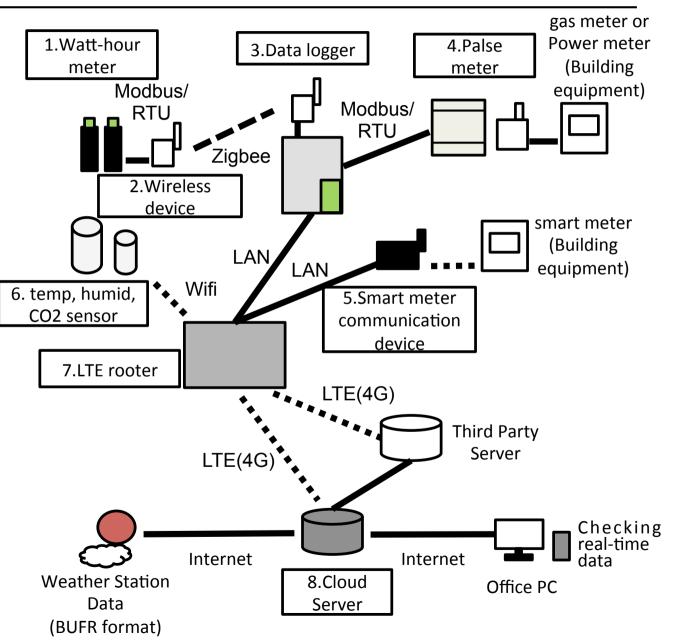
Bizen Green Energy

Measured Buildings

Green, and more

We measured the energy consumption of 18 non-residential buildings in detail. Especially, we selected buildings using large energy for heat.

building	floor	energy use per	measured points			
building	area(m2)	energy use per area(MJ/m2)	Electricity	Town Gas	LPG	
Bank A	285	311	68	0	0	
Bank B	316	416	75	0	0	
City hall A	15,100	247	258	0	3	
City hall B	2,611	187	172	0	0	
Convention hall	6,000	515	146	0	3	
Elderly nursing home A	3,265	426	63	0	2	
Elderly nursing home B	5,298	392	390	0	1	
Elderly nursing home C	4,013	513	271	0	0	
Elderly nursing home D	4,877	840	307	0	3	
Food plant A	1,370	8,981	98	0	2	
Food plant B	1,830	3,305	72	0	4	
School lunch facility A	960	1,457	76	0	0	
School lunch facility B	2,432	3,600	223	0	2	
Restaurant A	1,163	5,957	125	5	0	
Restaurant B	626	5,672	70	2	0	
Restaurant C	313	16,641	51	7	0	
Restaurant D	495	7,461	72	0	3	
Restaurant E	1,486	5,410	117	2	0	
Total			2,654	16	23	



Green, and more

Measurement system features:

- 1.Flexiblity
- 2.Real-time check of data lost
- 3.Low cost

Estimating energy consumption by purpose

Abstract of estimation methods

1.AC

AC is estimated from the difference between the monthly consumption and the baseline (the smallest monthly consumption).

2.Domestic hot water

Domestic hot water is estimated by the regression equation of $(T \downarrow use - T \downarrow water)/COP$ and the monthly consumption.

3.Lighting

Lighting is estimated by multiplying the rated inputs and the annual use time by each lighting appliance.

4. Transfomer loss

Transformer loss is estimated from the monthly electricity consumption, the rated unload loss, and the rated load loss.

5. Cooking and other devices

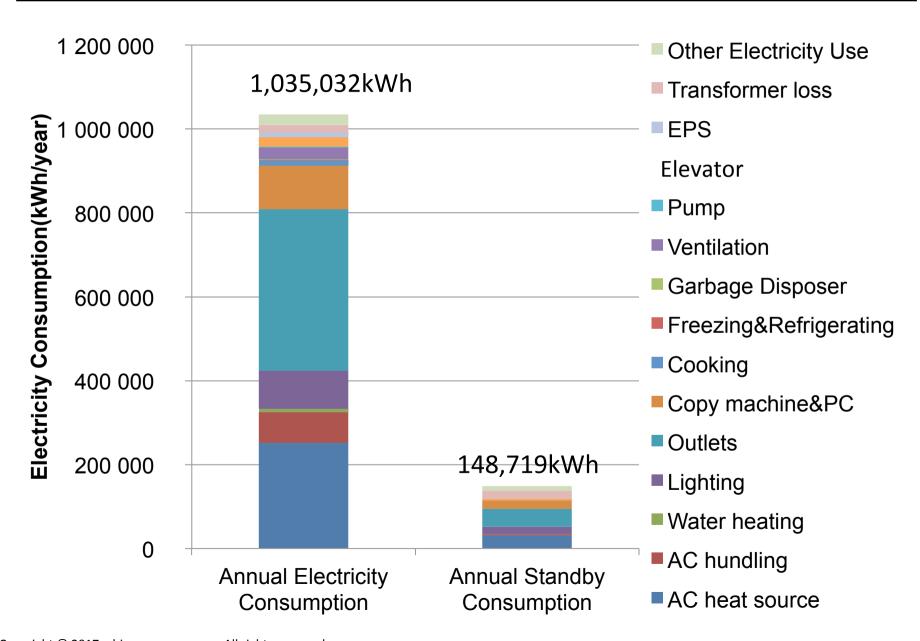
Cooking and other devices are estimated from subtracting the above estimated values from the total energy consumption.

Comparison

The comparison between the estimated energy consumption of each purpose and the measured value shows a maximum difference of 17%

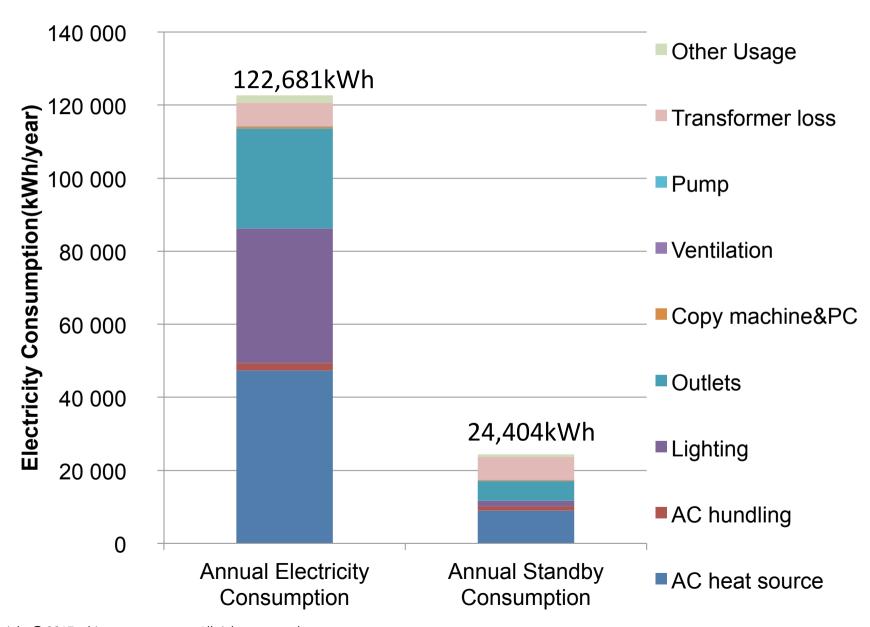
	nsumption year)	AC	domestic hot water	Lighting	Cooking	Other devices Transformer loss	Total
BankA	Measured value	22		11		54	88
	Estimated value	24		11		53	88
	Difference	8%		1%		-3%	1%
Restaurant C	Measured value	85		1,141	3,453	524	5,203
	Estimated value	95		1,263	3,252	560	5,210
	Difference	10%		11%	-6%	13%	0%
nursing	Measured value	469	371	229	251	787	2,108
	Estimated value	440	393	191	251	819	2,094
	Difference	-6%	6%	-17%	0%	4%	-1%

Standby Power Consumption of nonresidential buildings



The standby power definition in this study

- 1. AC: the electricity consumption when AC is not used.
- 2. Lighting and Outlet: the electricity consumption when there are no employees within the building; however, the electricity consumption of computer server and EPS are excluded.
- 3. Transformer: load and unload losses.
- 4. Other: electricity consumption of vending machines and the emergency exit signs when the building is closed.


Standby power in City hall A

Conclusions & Discussion

Conclusions

- The methods can estimate the annual energy consumption for AC, domestic hot water, lighting, cooking, transformer loss, and other devices from available data and it helps engineers to find effective measures for energy saving
- 2. The standby power accounts for 14% to 20% of the total electricity consumption in a non-residential building

Discussion point

1. While more energy saving measure proceeds, the standby power will account for larger percentage of electricity consumption. How should we handle the issue?