

THE INTERNATIONAL INSTITUTE FOR INDUSTRIAL ENVIRONMENTAL ECONOMICS

Accounting for Durability in Least Life Cycle Cost Methods

JESSIKA LUTH RICHTER, ROBERT VAN BUSKIRK, CARL DALHAMMAR, PETER BENNICH

Circular Economy

- More than efficiency
- Resource recovery and closed loops
- Durable products

Current Ecodesign Requirements for Lighting

Requirements of EU Ecodesign regulations	Directional and LEDs	Non-directional lamps (italics for lamps excluding CFL and LEDs)
lamp survival factor at 6,000 hours	≥ 70% except LEDs ≥ 90% LEDs	 ≥ 70% ≥ 85 % at 75 % of rated average lifetime and 2000 hour minimum rated lifetime for lamps
lumen maintenance' at 6,000 hours	≥ 70 CFLs ≥ 80 LEDs	≥ 85 % at 75 % of rated average lifetime
number of switching cycles before failure	≥ 15,000 if rated lamp life ≥ 30,000 hours, otherwise ≥ half the rated lamp life expressed in hours	 ≥ lamp lifetime expressed in hours ≥ 30 000 if lamp starting time > 0.3 s ≥ four times the rated lamp life expressed in hours
premature failure rate (maximum number of failure products in %)	≤ 5 % at 1 000 h	≤ 2 % at 400 h ≤ 5 % at 200 h
'colour rendering' requirements for various applications	≥ 80	≥ 80

The data : webcrawled (Big2Great)

Lifetime	≤15000 h (n = 130)	20000 h (n=44)	25000 h (n=139)	≥ 30000 (n=30)
Price	AVG: 13 €	AVG: 15 €	AVG: 14.4 €	AVG: 15.2 €
	Range: 28-959 SEK	Range: 9-659 SEK	Range: 19-720 SEK	Range: 19-390 SEK
Lumens (Im)	AVG: 475	AVG: 489	AVG: 573	AVG: 455
	Range: 8-1800	Range: 110-2200	Range: 136-1522	Range: 82-1500
Efficiency (Im/W)	AVG: 83	AVG: 72	AVG: 79	AVG: 68
	Range: 16-128	Range: 37-100	Range: 46-125	Range: 27-120
Temperature (K)	AVG: 2700	AVG: 2850	AVG: 2700	AVG: 3000
	Range: 1900-6500	Range: 1800-6500	Range: 2100-6500	Range: 2700-6000

The modelling

• Least lifecycle costs (LCC) is defined as:

 $LCC = P \downarrow A + PWF \cdot P \downarrow E \cdot UEC + EoL$

where P_A is the appliance price, *PWF* is the present worth factor, P_E is the price of electricity, and *UEC* is the annual unit energy use and EoL is end of life costs.

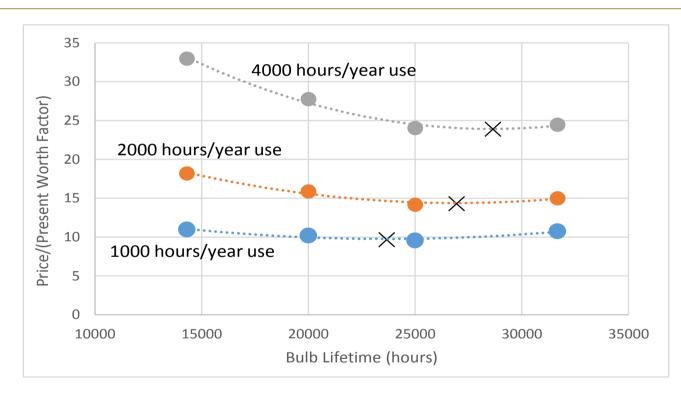
• The durability of a product determines the lifetime, which in turn determines the present worth factor. The present worth factor can be defined as:

 $PWF=1-(1+i)^{1}-L/i$

Where *i* is the interest or discount rate and *L* is the product lifetime.

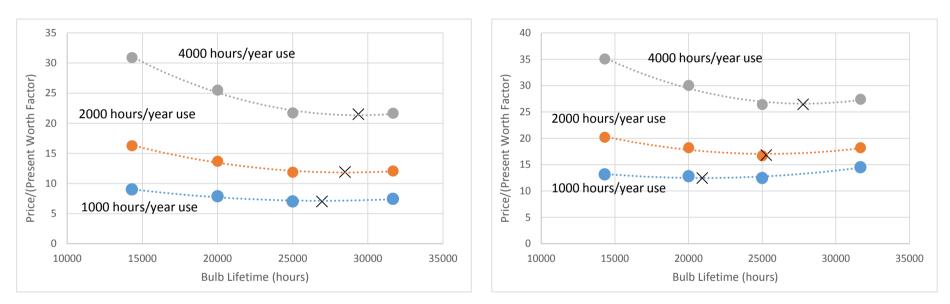
• Dividing by the present worth factor (which takes into account the influence of inflation and discount rates) gives an annualized LCC:

 $LCC/PWF = P \downarrow A / PWF + P \downarrow E \cdot UEC + EoL / PWF$



Modelling durability

- LED models in the data were binned into four categories: <15K hours, 20K hours, 25K hours and >30K hours and the price regression coefficients for each bin were calculated for a selected subset of LED bulbs.
- The regression results were used to calculate price as a function of lifetime
- As PWF depends on the number of intensity of use, PWFs for three different scenarios of years, based on hours of operation per year - 1000, 2000 and 4000 lifetime hours.



Analysis

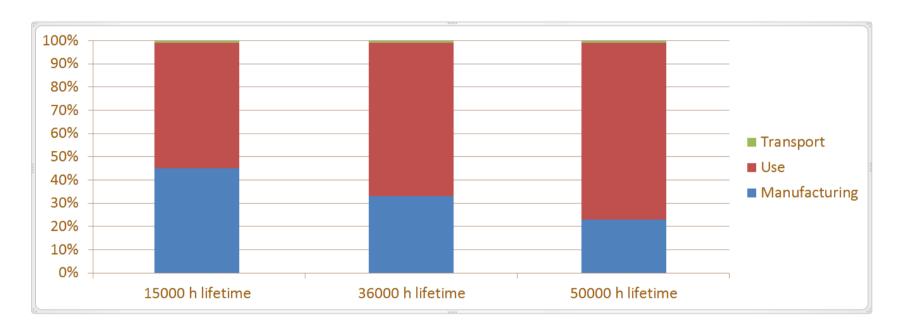
Discount factors - sensitivity

3% Discount factor

9% Discount factor

Lifetime claims versus lifetime testing

- Standard testing methods focus on the lifetime of the LED components rather than the whole system.
- Often focus on lumen depreciation over catastrophic failure, though both are of concern (Narendran et al., 2016).
- Promising developments in accelerated testing procedures (Narendran, personal communication 3 March 2017)



Policy options for durability

Policy choice	Advantages	Disadvantages
Mandatory requirements	 Allows policymakers to make the appropriate trade-offs between different functions The complexity of establishing 'durability' for lighting implies that mandatory requirements can be helpful 	 Policymakers may interfere with decisions that are best taken by designers Customers could use labelling to differentiate product lifetime according to their preferences
Mandatory labelling	 Allows consumers to choose products according to preferences, and provides for competition Less intrusive for producers than mandatory 	 Difficult for consumers to interpret information Risk of cheating The broad range of LED products and applications can lead to varying lifetimes in practice.
Voluntary extended warranties	 Useful in B2B applications where buyers can interpret technical information and enter into relevant contracts suitable for the purpose in which LED used 	 Less useful for private buyers as the information is complex and the limited price of many LED products may mean that buyers are not very interested
Mandatory extended warranties	 Could be useful for consumers and increase confidence in LED products 	Not so useful in B2B relations

Moving forward

based on (Tähkämö et al., 2013)

LUND UNIVERSITY